Кариотип определение – что такое, определение кариотипа, хромосомы

Кариотип определение – что такое, определение кариотипа, хромосомы

Содержание

Кариотип

09 февраля 2011

Оглавление:
1. Кариотип
2. Номенклатура
3. Аномальные кариотипы и хромосомные болезни
4. Кариотип некоторых биологических видов

Рис. 1. Изображение набора хромосом и систематизированный женский кариотип 46 XX. Получено методом спектрального кариотипирования.

совокупность признаков полного набора хромосом, присущая клеткам данного биологического вида, данного организма или линии клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора.

Определение кариотипа

Внешний вид хромосом существенно меняется в течение клеточного цикла: в течение интерфазы хромосомы локализованы в ядре, как правило, деспирализованы и труднодоступны для наблюдения, поэтому для определения кариотипа используются клетки в одной из стадий их деления — метафазе митоза.

Процедура определения кариотипа

Для процедуры определения кариотипа могут быть использованы любые популяции делящихся клеток, для определения человеческого кариотипа используется либо одноядерные лейкоциты, извлечённые из пробы крови, деление которых провоцируется добавлением митогенов, либо культуры клеток, интенсивно делящихся в норме. Обогащение популяции клеточной культуры производится остановкой деления клеток на стадии метафазы митоза добавлением колхицина — алкалоида, блокирующего образование микротрубочек и «растягивание» хромосом к полюсам деления клетки и препятствующего тем самым завершению митоза.

Полученные клетки в стадии метафазы фиксируются, окрашиваются и фотографируются под микроскопом; из набора получившихся фотографий формируются т. н. систематизированный кариотип — нумерованный набор пар гомологичных хромосом, изображения хромосом при этом ориентируются вертикально короткими плечами вверх, их нумерация производится в порядке убывания размеров, пара половых хромосом помещается в конец набора.

Исторически первые недетализованные кариотипы, позволявшие проводить классификацию по морфологии хромосом получались окраской по Романовскому — Гимзе, однако дальнейшая детализация структуры хромосом в кариотипах стала возможной с появлением методик дифференциального окрашивания хромосом.

Классический и спектральный кариотипы

Рис. 2. Пример определения транслокации по комплексу поперечных меток и по спектру участков.

Для получения классического кариотипа используется окраска хромосом различными красителями или их смесями: в силу различий в связывании красителя с различными участками хромосом окрашивание происходит неравномерно и образуется характерная полосчатая структура, отражающая линейную неоднородность хромосомы и специфичная для гомологичных пар хромосом и их участков. Первый метод окраски хромосом, позволяющий получить такие высокодетализированные изображения, был разработан шведским цитологом Касперссоном Используются и другие красители, такие методики получили общее название дифференциального окрашивания хромосом:

  • Q-окрашивание — окрашивание по Касперссону акрихин-ипритом с исследованием под флуоресцентным микроскопом. Чаще всего применяется для исследования Y-хромосом
  • G-окрашивание — модифицированное окрашивание по Романовскому — Гимзе. Чувствительность выше, чем у Q-окрашивания, поэтому используется как стандартный метод цитогенетического анализа. Применяется при выявлении небольших аберраций и маркерных хромосом
  • R-окрашивание — используется акридиновый оранжевый и подобные красители, при этом окрашиваются участки хромосом, нечувствительные к G-окрашиванию. Используется для выявления деталей гомологичных G- или Q-негативных участков сестринских хроматид или гомологичных хромосом.
  • C-окрашивание — применяется для анализа центромерных районов хромосом, содержащих конститутивный гетерохроматин и вариабельной дистальной части Y-хромосомы.
  • T-окрашивание — применяют для анализа теломерных районов хромосом.

В последнее время используется методика т. н. спектрального кариотипирования, состоящая в окрашивании хромосом набором флуоресцентных красителей, связывающихся со специфическими областями хромосом. В результате такого окрашивания гомологичные пары хромосом приобретают идентичные спектральные характеристики, что не только существенно облегчает выявление таких пар, но и облегчает обнаружение межхромосомных транслокаций, то есть перемещений участков между хромосомами — транслоцированные участки имеют спектр, отличающийся от спектра остальной хромосомы.

Анализ кариотипов

Сравнение комплексов поперечных меток в классической кариотипии или участков со специфичными спектральными характеристиками позволяет идентифицировать как гомологичные хромосомы, так и отдельные их участки, что позволяет детально определять хромосомные аберрации — внутри- и межхромосомные перестройки, сопровождающиеся нарушением порядка фрагментов хромосом. Такой анализ имеет большое значение в медицинской практике, позволяя диагностировать ряд хромосомных заболеваний, вызванных как грубыми нарушениями кариотипов, так и нарушением хромосомной структуры или множественностью клеточных кариотипов в организме.

Просмотров: 16276

www.muldyr.ru

это…. Где сдать анализ на кариотип?

Люди часто путают названия и не понимают различий между хромосомными синдромами и генными заболеваниями. Эти термины обозначают разные патологии. Из данной статьи вы узнаете, что такое кариотип, в чем заключается особенность хромосомных заболеваний.

Что означает термин «кариотип»?

Кариотипы – это некие сочетания хромосом. Цитогенетические исследования на предмет их количества и строения проводятся в любом возрасте, один раз в жизни. Что можно определить у хромосомы при исследовании:

  1. Форму и размеры.
  2. Длину плеча.
  3. Наличие дополнительных перетяжек.
  4. Расположение теломер.

Типы кариотипов

У всех видов живых организмов, в том числе и людей, существуют свои кариотипы. Это сочетание всех качеств хромосом, состав которых обеспечивает нормальную жизнедеятельность каждого конкретного индивидуума живого мира. Кариотип бывает:

  1. Видовой, то есть характерный только для данного вида.
  2. Индивидуальный – свойственный отдельной особи.

Нормальный кариотип человека

Заболевания, которые сопровождаются патологическими изменениями, называются хромосомными. Генетика изучает их особенности и строение. В норме хромосомы человека (кариотип) состоят из 46 штук. В этом составе есть два вида. Половые хромосомы содержатся в количестве 2 штук. Остальные 22 пары — неполовые, они носят название «аутосомы».

У женщин половые хромосомы представлены парой XX (две большие хромосомы), а у мужчин — XY (одна большая и одна маленькая). Исходя из этого, нормальный кариотип у прекрасной половины человечества имеет формулу 46XX, а у мужчин – 46XY. Любые отклонения от данных формул вызывают различные уродства, пороки развития, невынашивание плода, бесплодие и др.

Анализ кариотипа

Анализ кариотипа происходит на стадии деления клеток, когда изменяются их размеры. В этот период они доступны для распознавания. Исследование на кариотипы проводится благодаря способу специальной окраски и последующему изучению хромосом в световом микроскопе. Данный метод позволяет увидеть размеры и формы, структуру тел, а также первичные или вторичные перетяжки и неоднородность участков. Для визуального описания изменений хромосом была разработана международная система обозначений. Сначала указывается их количество (цифрами), затем отмечается их вид — половые или аутосомы, а следующая запись – это особенности (в основном длина плеча).

Все изображения в микроскопе фотографируются, чтобы зафиксировать изменения, и по совокупности всех кадров в итоге составляется полная картина. Очень важно сдать анализы на кариотипы, это поможет выявить различные патологии еще на ранних стадиях зарождения и развития эмбриона. Ведь это влияет на рождение здорового потомства.

Типы анализов на кариотип

Существуют 2 типа исследования на кариотип:

  1. Определение кариотипа в лейкоцитах. Данное исследование проводится взрослым людям на предмет нахождения или исключения хромосомной патологии. Ведь, если она подтвердится, то в будущих поколениях может появиться генетическое заболевание. Для такого анализа пациенту необходимо сдать кровь на кариотип.
  2. Пренатальное исследование. Этот анализ проводится внутриутробно, чтобы определить хромосомные патологии у плода. Очень важно для будущих родителей сделать данный анализ, проверить кариотип. Цена на него хоть и отпугивает, но необходимо изыскать средства и сделать исследование. При некоторых результатах анализа показано прерывание беременности, так как патология плода может быть несовместима с жизнью или в будущем принесет тяжелые, непоправимые последствия.

Кому необходимо сдавать анализ на кариотип?

Во многих странах исследование кариотипа является обязательным условием перед вступлением в брак. И это правильно, ведь у любого человека может возникнуть изменение строения хромосом, которое не влияет на его здоровье. Но это может проявиться только при планировании беременности.

Как и в случаях со сдачей любых других анализов, существуют относительные и абсолютные показания к определению. К первой группе относятся:

  1. Наличие генетической патологии у одного из супругов.
  2. Постоянные самопроизвольные выкидыши.
  3. Рождение ребенка с генетической патологией.
  4. Возраст будущей мамы или планирующей беременность женщины свыше 35 лет.
  5. Воздействие на организм различных патогенных факторов, таких как радиация, химические вещества и др.
  6. Нарушение полового развития.

Относительные показания к сдаче на кариотипы – это необязательные предрасположения. Анализы в таких случаях сдавать желательно.

Что можно выяснить при сдаче анализа на кариотип?

Пройдя это исследование, можно многое узнать о своем генетическом здоровье. Первое и самое приятное – это убеждение в том, что человек здоров. Любое изменение кариотипа говорит об отклонениях от нормы. Данный вид исследования поможет выяснить:

  1. Причины различных нарушений у детей, таких как задержка развития, нарушение интеллекта, преждевременное прекращение роста и др.
  2. Выяснить риски рождения потомства с генетическими заболеваниями.

Помимо этого данный анализ позволяет распознать различные хромосомные заболевания. Существуют ярко выраженные формулы, то есть кариотипы синдромов, таких как:

  1. Синдром Дауна. Данное заболевание сформировано еще внутри утробы матери 47 хромосомами. У 21 пары обнаруживается дополнительная единица, которая и отвечает за болезнь.
  2. Полисомия по Х-хромосоме.
  3. Синдром Патау.
  4. Различные пороки.
  5. Синдром кошачьего крика и др.

Кариотип с аномалиями обнаруживается примерно у 1% всех новорожденных. Эти нарушения ведут к умственной отсталости, различным патологиям и даже к летальному исходу. Случаи аномалий увеличиваются вместе с возрастом матери. Этот показатель влияет на риск развития у ребенка синдрома Дауна. У беременной в возрасте до 35 лет такой риск составляет 1:1000, до 40 лет -1:200, а после 45 – 1:19.

Где можно сделать анализ на кариотип?

Несмотря на то что данное исследование многим известно и достаточно распространено, некоторые задаются вопросом: где сдать кариотип и в каком месте берут этот анализ? Эта процедура достаточно трудоемкая и, соответственно, дорогостоящая, поэтому в районных поликлиниках она не проводится. Но в каждом большом городе есть учреждение, где сдается анализ на кариотип, достаточно лишь получить направление от лечащего врача. К таким организациям относятся:

  1. Центры планирования семьи.
  2. Медицинские генетические учреждения.
  3. Современные лаборатории, проводящие различные исследования.
  4. Центры материнства и детства.
  5. Частные клиники.

Для предотвращения неблагоприятного исхода беременности и выявления причины бесплодия нужно тщательным образом изучить хромосомный набор обоих супругов. Современное обнаружение нарушения кариотипа позволяет применить методы, благодаря которым можно родить здорового ребенка.

Одной из основных причин изменения кариотипа является «неправильный» сперматогенез. Некоторые сперматозоиды с нарушенным строением участвуют в оплодотворении яйцеклетки. Именно они могут стать причиной зарождения эмбриона с измененным кариотипом. Помимо этого на появление нарушений влияет плохая экологическая обстановка, которая провоцирует мутацию хромосом. А они, в свою очередь, негативно воздействуют на изменение кариотипа человека. Эти мутации передаются по наследству, поэтому не стоит рисковать здоровьем своего будущего ребенка и пренебрежительно относиться к анализам такого рода.

fb.ru

Биология для студентов — 14. Кариотип, определение, методы изучения

Кариотип, совокупность признаков хромосомного набора, характерная для каждого биологического вида. К таким признакам относятся:

  • число,
  • размер и форма хромосом,
  • положение на хромосомах первичной перетяжки (центромеры),
  • наличие вторичных перетяжек,
  • чередование гетерохроматиновых и эухроматиновых участков и др.

Кариотип служит «паспортом» вида, надёжно отличающим его от кариотипов других видов. Постоянство всех признаков видового кариотипа обеспечивается точными процессами распределения хромосом по дочерним клеткам в митозе и мейозе (эти процессы могут нарушаться при хромосомных мутациях).

Кариотип — полный набор хромосом в клетках человека. Нормой содержания хромосом в соматических (неэмбриональных) клетках человека являются 46 хромосом, организованных в 23 пары. Каждая пара состоит из одной хромосомы, полученной от матери и одной, полученной от отца.

Внешний вид хромосом существенно меняется в течение клеточного цикла: в течение интерфазы хромосомы локализованы в ядре, как правило, деспирализованы и труднодоступны для наблюдения, поэтому для определения кариотипа используются клетки в одной из стадий их деления — метафазе митоза.

Хромосомы в световом микроскопе на стадии метафазы представляют собой молекулы ДНК, упакованные при помощи особых белков в плотные сверхспирализованные палочковидные структуры. Таким образом, большое число хромосом упаковывается в маленький объём и помещается в относительно небольшом объёме ядра клетки. Расположение хромосом, видимое в микроскопе, фотографируют и из нескольких фотографий собирают систематизированный кариотип — нумерованный набор хромосомных пар гомологичных хромосом. Изображения хромосом при этом ориентируют вертикально, короткими плечами вверх, а их нумерацию производят в порядке убывания размеров. Пару половых хромосом (X и Y у мужчины, X и X у женщины) помещают в самом конце изображения набора хромосом.

При изучении кариотипа, которое обычно проводят на стадии метафазы клеточного цикла, используют:

  • микрофотографирование,
  • специальные способы окраски хромосом и др. методы.

Для получения классического кариотипа используется окраска хромосом различными красителями или их смесями: в силу различий в связывании красителя с различными участками хромосом окрашивание происходит неравномерно и образуется характерная полосчатая структура (комплекс поперечных меток,), отражающая линейную неоднородность хромосомы и специфичная для гомологичных пар хромосом и их участков (за исключением полиморфных районов, локализуются различные аллельные варианты генов). Первый метод окраски хромосом, позволяющий получить такие высокодетализированные изображения, был разработан шведским цитологом Касперссоном (Q-окрашивание). Используются и другие красители, такие методики получили общее название дифференциального окрашивания хромосом.

Типы дифференциального окрашивания хромосом

  • G-окрашивание — модифицированное окрашивание по Романовскому — Гимзе. Чувствительность выше, чем у Q-окрашивания, поэтому используется как стандартный метод цитогенетического анализа. Применяется при выявлении небольших аберраций и маркерных хромосом (сегментированных иначе, чем нормальные гомологичные хромосомы).
  • Q-окрашивание — окрашивание по Касперссону акрихин-ипритом с исследованием под флуоресцентным микроскопом. Чаще всего применяется для исследования Y-хромосом (быстрое определения генетического пола, выявление транслокаций между X- и Y-хромосомами или между Y-хромосомой и аутосомами, скрининг мозаицизма с участием Y-хромосом).
  • R-окрашивание — используется акридиновый оранжевый и подобные красители, при этом окрашиваются участки хромосом, нечувствительные к G-окрашиванию. Используется для выявления деталей гомологичных G- или Q-негативных участков сестринских хроматид, или гомологичных хромосом.
  • C-окрашивание — применяется для анализа центромерных районов хромосом, содержащих конститутивный гетерохроматин и вариабельной дистальной части Y-хромосомы.
  • T-окрашивание — применяют для анализа теломерных районов хромосом.

В последнее время используется методика так называемого спектрального кариотипирования (флюоресцентная гибридизация FISH), состоящая в окрашивании хромосом набором флуоресцентных красителей, связывающихся со специфическими областями хромосом. В результате такого окрашивания гомологичные пары хромосом приобретают идентичные спектральные характеристики, что не только существенно облегчает выявление таких пар, но и облегчает обнаружение межхромосомных транслокаций, то есть перемещений участков между хромосомами — транслоцированные участки имеют спектр, отличающийся от спектра остальной хромосомы.

Результаты представляют в виде кариограммы (систематизированное расположение хромосом, вырезанных из микрофотографии) или идеограммы – схематического изображения хромосом, расположенных в ряд по мере убывания их длины.

Сравнительный анализ кариотипов используют в кариосистематике для определения путей эволюции кариотипов, выяснения происхождения домашних животных и культурных растений, для выявления хромосомных аномалий, ведущих к наследственным болезням, и т. д.

vseobiology.ru

Кариотип

Набор хромосом (справа) и систематизированный женский кариотип 46 XX (слева). Получено методом спектрального кариотипирование.

Кариотип 46, XY, t (1; 3) (p21; q21), del (9) (q22): показано транслокация (перенос фрагмента) между 1-й и 3-ю хромосомами, делецию (потерю участка) 9-й хромосомы . Маркировка участков хромосом представлена ​​как за комплексами поперечных меток (классическая кариотипизация, полосы) так и по спектру флуоресценции (цвет, спектральная кариотипизация).

Кариотип — набор хромосом, специфический для каждого вида организмов; характеризуется определенным количеством хромосом и особенностью их строения.

Кариотипом иногда называют визуальное представление полного хромосомного набора (кариограмы).


1. Номенклатура

С целью систематизации цитогенетических описаний разработана Международная цитогенетическая номенклатура (International System for Cytogenetic Nomenclature, ISCN), основана на дифференциальном окраске хромосом, которая позволяет подробно описать отдельные хромосомы и их участки. Запись имеет следующий формат:

[Номер хромосомы] [плечо] [номер участка]. [Номер полосы]

длинное плечо хромосомы обозначают буквой q, короткое — буквой p, хромосомные аберрации обозначают дополнительными символами. Также в научной литературе часто можно встретить такие обозначения: FN — фундаментальное число, это суммарное количество хромосомных плеч; 2n — диплоидный набор хромосом.


2. Определение кариотипа

Внешний вид хромосом существенно меняется в течение клеточного цикла: в течение интерфазы хромосомы локализованы в ядре, как правило, деспирализовани и труднодоступные для наблюдения, поэтому для определения кариотипа используются клетки в одной из стадий их деления — метафазе митоза.

3. Процедура определения кариотипа

Для процедуры определения кариотипа могут быть использованы любые популяции делящихся клеток, для определения человеческого кариотипа используется либо одноядерные лейкоциты, извлеченные из пробы крови, распределение которых провоцируется добавлением митогенов, или культуры клеток, активно делятся в норме (фибробласты кожи, клетки костного мозга). Обогащение популяции клеточной культуры проводится остановкой деления клеток на стадии метафазы митоза добавлением колхицина — алкалоида, который блокирует образование микротрубочек и «растягивание» хромосом к полюсам деления клетки и препятствует тем самым завершение митоза.

Полученные клетки в стадии метафазы фиксируются, окрашиваются и фотографируются под микроскопом, с набора полученные фотографий формируются т. н. систематизированный кариотип — нумерованный набор пар гомологичных хромосом (аутосом), изображения хромосом при этом ориентируются вертикально короткими плечами вверх, их нумерация производится в порядке убывания размеров, пара половых хромосом содержится в конец набора (см. Рис. 1).

Исторически первые детализированные кариотип, позволявшие проводить классификацию по морфологии хромосом выходили окраской по Романовскому — Гимзе, однако дальнейшая детализация структуры хромосом в кариотипе стала возможной с появлением методик дифференциального окрашивания хромосом. Классический и спектральный кариотип

Рис. 2. Пример определения транслокации по комплексу поперечных меток (полоски, классический кариотип) и по спектру участков (цвет, спектральный кариотип).

Для получения классического кариотипа используется окраска хромосом различными красителями или их смесями: в силу различий в связывании красителя с различными участками хромосом окрашивание происходит неравномерно и образуется характерная полосчатая структура (комплекс поперечных меток, англ. Banding), отражающий линейную неоднородность хромосомы и специфическая для гомологичных пар хромосом и их участков (за исключением полиморфных районов, локализуются различные аллельных вариантов генов). Первый метод окраски хромосом, что позволяет получить такие высокодетализированных изображения, был разработан шведским цитологом Касперсоном (Q-окраска) [1] Используются и другие красители, такие методики получили общее название дифференциального окрашивания хромосом: [2] Q-окрашивание — окрашивание по Касперсоном акрихин -ипритом с исследованием под флуоресцентным микроскопом. Чаще всего применяется для исследования Y-хромосом (быстрое определение генетического пола, выявление транслокаций между X-и Y-хромосомами или между Y-хромосомой и аутосомами, скрининг мозаицизма с участием Y-хромосом) G-окрашивание — модифицированное окрашивание по Романовскому — Гимзе. Чувствительность выше, чем в Q-окраска, поэтому используется как стандартный метод цитогенетического анализа. Применяется при выявлении небольших аберраций и маркерных хромосом (сегментированных иначе, чем нормальные гомологичные хромосомы) R-покраска — используется акридинового оранжевый и подобные красители, при этом окрашиваются участки хромосом, нечувствительные к G-окрашивания. Используется для обнаружения деталей гомологичных G-или Q-негативных участков сестринских хроматид или гомологичных хромосом. C-окраска — применяется для анализа центромирних районов хромосом, содержащих конститутивные гетерохроматин и вариабельной дистальной части Y-хромосомы. T-окрашивание — применяют для анализа теломерной районов хромосом.

Последнее время используется методика так называемого спектрального кариотипирование ( флюоресцентная гибридизация in situ, англ. Fluorescence in situ hybridization, FISH ), Состоящий в окраске хромосом набором флюоресцентных красителей, связываются со специфическими областями хромосом [3]. В результате такого окрашивания гомологичные пары хромосом приобретают идентичные спектральные характеристики, что не только существенно облегчает выявление таких пар, но и облегчает выявление межхромосомные транслокаций, т.е. перемещений участков между хромосомами — транслоцированние участки имеют спектр, отличающийся от спектра остальных хромосомы. Анализ кариотипов

Сравнение комплексов поперечных меток в классической кариотипа или участков со специфическими спектральными характеристиками позволяет идентифицировать как гомологичные хромосомы, так и отдельные их участки, что позволяет детально определять хромосомные аберрации — внутри-и межхромосомные перестройки, сопровождающиеся нарушением порядка фрагментов хромосом (делеции, дупликации, инверсии , транслокации). Такой анализ имеет большое значение в медицинской практике, позволяя диагностировать ряд хромосомных заболеваний, вызванных как грубыми нарушениями кариотипов (нарушение числа хромосом), так и нарушением хромосомной структуры или множественностью клеточных кариотипов в организме (мозаицизм). Номенклатура

Рис.3. Кариотип 46, XY, t (1; 3) (p21; q21), del (9) (q22): показаны транслокация (перенос фрагмента) между 1-й и 3-й хромосомами, делеция (утеря участка) 9-й хромосомы . Маркировка участков хромосом дана как по комплексам поперечных меток (классическая кариотипизация, полоски), так и по спектру флуоресценции (цвет, спектральная кариотипизация).

Для систематизации цитогенетических описаний была разработана Международная цитогенетическая номенклатура (International System for Cytogenetic Nomenclature, ISCN), основанная на дифференциальном окрашивании хромосом и позволяет детально описывать отдельные хромосомы и их участки. Запись имеет следующий формат: [Номер хромосомы] [плечо] [номер участка]. [Номер полосы]

длинное плечо хромосомы обозначают буквой q, короткое — буквой p, хромосомные аберрации обозначаются дополнительными символами.

Таким образом, 2-я полоса 15-го участка короткого плеча 5-й хромосомы записывается как 5p15.2.

Для кариотипа используется запись в системе ISCN 1995 [4], имеет следующий формат: [Число хромосом], [половые хромосомы], [особенности] [5].

Для обозначения половых хромосом у разных видов используются различные символы (буквы), которые зависят от специфики определения пола таксона (различные системы половых хромосом). Так, у большинства млекопитающих женский кариотип гомогаметен, а мужской гетерогаметен, соответственно, запись половых хромосом самки XX, самца — XY. У птиц же самки гетерогаметных, а самцы гомогаметных, т.е. запись половых хромосом самки ZW, самца — ZZ.

В качестве примера можно привести такие кариотип: нормальный (видовой) кариотип домашнего кота: 38, XY индивидуальный кариотип лошади с «лишним» X-хромосомой (трисомия по X-хромосоме): 65, XXX индивидуальный кариотип домашней свиньи с делеций (потерей участка) длинного плеча (q) 10-й хромосомы: 38, XX, 10q-индивидуальный кариотип мужчины с транслокации 21-х участков короткого (p) и длинного плеч (q) 1-й и 3-й хромосом и делец 22-го участка длинного плеча (q) 9-й хромосомы (приведены на Рис. 3): 46, XY, t (1; 3) (p21; q21), del (9) (q22)

Поскольку нормальный кариотип является видоспецифичными, то разрабатываются и поддерживаются стандартные описания кариотипов различных видов животных и растений, в первую очередь домашних и лабораторных животных и растений [6]. Аномальные кариотипа и хромосомные болезни

Нормальный кариотип человека — 46, XX (женский) и 46, XY (мужской). Нарушение нормального кариотипа у человека возникают на ранних стадиях развития организма: в случае, если такое нарушение возникает при гаметогенезе, в котором продуцируются половые клетки родителей, кариотип зиготы, образовавшейся при их слиянии, также оказывается нарушенным. При дальнейшем распределении такой зиготы все клетки эмбриона и развился из него организма имеют одинаковый аномальным кариотипом.

Однако нарушения кариотипа могут возникнуть и на ранних стадиях дробления зиготы, развившийся из такой зиготы организм содержит несколько линий клеток (клеточных клонов) с различными кариотипа, такая множественность кариотипов всего организма или отдельных его органов именуется мозаицизм.

Как правило, нарушения кариотипа у человека сопровождаются множественными пороками развития, большинство таких аномалий несовместимо с жизнью и приводят к самопроизвольным абортам на ранних стадиях беременности. Однако достаточно большое количество плодов (~ 2.5% [Источник? 570 дней]) с аномальным кариотипом доношуеться до окончания беременности. Некоторые болезни человека, вызванные аномалиями кариотипов [7], [8] Кариотип Болезнь Комментарий 47, XXY, 48, XXXY; Синдром Клайнфельтера полисомии по X-хромосоме у мужчин 45X0; 45X0/46XX, 45, X/46, XY, 46 а , X iso (Xq) Синдром Шерешевского — Тернера моносомия по X хромосоме, в том числе и мозаицизм 47, ХХX, 48, ХХХХ, 49, ХХХХХ полисомии по X хромосоме Наиболее часто — трисомия X 47, ХХ, 21 +, 47, ХY , 21 + Синдром Дауна Трисомия по 21-й хромосоме 47, ХХ, 18 +, 47, ХY, 18 + Синдром Эдвардса Трисомия по 18-й хромосоме 47, ХХ, 13 +, 47, ХY, 13 + Синдром Патау Трисомия по 13 -й хромосоме 46, XX, 5р-Синдром кошачьего крика делеция короткого плеча 5-й хромосомы 46 XX или ХУ, 15Р-. Синдром Прадера-Вилли Аномалия 15 хромосомы

Кариотип некоторых биологических видов

Каждый вид организмов имеет характерный и постоянным набором хромосом. Количество диплоидных хромосом отличается от организма к организму: Кариотип гоминид

У человека нормальный кариотип состоит из 46 хромосом. Тогда как у шимпанзе, гориллы — 48. См. также Теория наследственности Наследственные заболевания Хромосома Половые хромосомы


Источники

Примечания ↑ Caspersson T. et al. Chemical differentiation along metaphase chromosomes. Exp. Cell Res. 49, 219-222 (1968). ↑ Р. Фок. Генетика эндокринных болезней / / Эндокринология (под ред. Нормана Лавина) М., «Практика», 1999 ↑ E. Schr?ck, S. du Manoir et al .. Multicolor Spectral Karyotyping of Human Chromosomes. Science, 26 Jul 1996; 273 (5274): 494 (in Reports) ↑ ISCN (1995): An International System for Human Cytogenetic Nomenclature, Mitelman, F (ed) S. Karger, Basel, 1995 ↑ ISCN Symbols and Abbreviated Terms / / Coriell Institute for Medical Research ↑ Resources for Genetic and Cytogenetic Nomenclature / / Council of Science Editors ↑ Международная классификация болезней. Врожденные аномалии [пороки развития], деформации и хромосомные нарушения (Q00-Q99), Хромосомные аномалии, не классифицированные в других рубриках (Q90-Q99) ↑ Хромосомные болезни / / НЕВРОНЕТ на латинице

nado.znate.ru

Что такое кариотип. Его определение



Рис. 1. Изображение набора хромосом (справа) и систематизированный женский кариотип 46 XX (слева). Получено методом спектрального кариотипирования.


Кариоти́п — совокупность признаков (число, размеры, форма и т.д.) полного набора хромосом, присущий клеткам данного биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора (кариограммы).


Определение кариотипа


Внешний вид хромосом существенно меняется в течение клеточного цикла: в течение интерфазы хромосомы локализованы в ядре, как правило, деспирализованы и труднодоступны для наблюдения, поэтому для определения кариотипа используются клетки в одной из стадий их деления — метафазе митоза.


Процедура определения кариотипа


Для процедуры определения кариотипа могут быть использованы любые популяции делящихся клеток, для определения человеческого кариотипа используется либо одноядерные лейкоциты, извлечённые из пробы крови, деление которых провоцируется добавлением митогенов, либо культуры клеток, интенсивно делящихся в норме (фибробласты кожи, клетки костного мозга). Обогащение популяции клеточной культуры производится остановкой деления клеток на стадии метафазы митоза добавлением колхицина — алкалоида, блокирующего образование микротрубочек и «растягивание» хромосом к полюсам деления клетки и препятствующего тем самым завершению митоза.


Полученные клетки в стадии метафазы фиксируются, окрашиваются и фотографируются под микроскопом; из набора получившихся фотографий формируются т. н.систематизированный кариотип — нумерованный набор пар гомологичных хромосом (аутосом), изображения хромосом при этом ориентируются вертикально короткими плечами вверх, их нумерация производится в порядке убывания размеров, пара половых хромосом помещается в конец набора (см. Рис. 1).


Исторически первые недетализованные кариотипы, позволявшие проводить классификацию по морфологии хромосом получались окраской по Романовскому — Гимзе, однако дальнейшая детализация структуры хромосом в кариотипах стала возможой с появлением методик дифференциального окрашивания хромосом.


Классический и спектральный кариотипы



Рис. 2. Пример определения транслокации по комплексу поперечных меток (полоски, классический кариотип) и по спектру участков (цвет, спектральный кариотип).


Для получения классического кариотипа используется окраска хромосом различными красителями или их смесями: в силу различий в связывании красителя с различными участками хромосом окрашивание происходит неравномерно и образуется характерная полосчатая структура (комплекс поперечных меток, англ. banding), отражающая линейную неоднородность хромосомы и специфичная для гомологичных пар хромосом и их участков (за исключением полиморфных районов, локализуются различные аллельные варианты генов). Первый метод окраски хромосом, позволяющий получить такие высокодетализированные изображения, был разработан шведским цитологом Касперссоном (Q-окрашивание). Используются и другие красители, такие методики получили общее название дифференциального окрашивания хромосом:


  • Q-окрашивание — окрашивание по Касперссону акрихин-ипритом с исследованием под флуоресцентным микроскопом. Чаще всего применяется для исследования Y-хромосом (быстрое определения генетического пола, выявление транслокаций между X- и Y-хромосомами или между Y-хромосомой и аутосомами, скрининг мозаицизма с участием Y-хромосом)

  • G-окрашивание — модифицированное окрашивание по Романовскому — Гимзе. Чувствительность выше, чем у Q-окрашивания, поэтому используется как стандартный метод цитогенетического анализа. Применяется при выявлении небольших аберраций и маркерных хромосом (сегментированных иначе, чем нормальные гомологичные хромосомы)

  • R-окрашивание — используется акридиновый оранжевый и подобные красители, при этом окрашиваются участки хромосом, нечувствительные к G-окрашиванию. Используется для выявления деталей гомологичных G- или Q-негативных участков сестринских хроматид или гомологичных хромосом.

  • C-окрашивание — применяется для анализа центромерных районов хромосом, содержащих конститутивный гетерохроматин и вариабельной дистальной части Y-хромосомы.

  • T-окрашивание — применяют для анализа теломерных районов хромосом.


В последнее время используется методика т. н. спектрального кариотипирования, состоящая в окрашивании хромосом набором флуоресцентных красителей, связывающихся со специфическими областями хромосом. В результате такого окрашивания гомологичные пары хромосом приобретают идентичные спектральные характеристики, что не только существенно облегчает выявление таких пар, но и облегчает обнаружение межхромосомных транслокаций, то есть перемещений участков между хромосомами — транслоцированные участки имеют спектр, отличающийся от спектра остальной хромосомы.


Анализ кариотипов


Сравнение комплексов поперечных меток в классической кариотипии или участков со специфичными спектральными характеристиками позволяет идентифицировать как гомологичные хромосомы, так и отдельные их участки, что позволяет детально определять хромосомные аберрации — внутри- и межхромосомные перестройки, сопровождающиеся нарушением порядка фрагментов хромосом (делеции, дупликации, инверсии, транслокации). Такой анализ имеет большое значение в медицинской практике, позволяя диагностировать ряд хромосомных заболеваний, вызванных как грубыми нарушениями кариотипов (нарушение числа хромосом), так и нарушением хромосомной структуры или множественностью клеточных кариотипов в организме (мозаицизмом).


Номенклатура



Рис.3. Кариотип 46, XY, t(1;3) (p21;q21), del (9) (q22): показаны транслокация (перенос фрагмента) между 1-й и 3-й хромосомами, делеция (потеря участка) 9-й хромосомы. Маркировка участков хромосом дана как по комплексам поперечных меток (классическая кариотипизация, полоски) так и по спектру флуоресценции (цвет, спектральная кариотипизация).


Для систематизации цитогенетических описаний была разработана Международная цитогенетическая номенклатура (International System for Cytogenetic Nomenclature, ISCN), основанная на дифференциальном окрашивании хромосом и позволяющая подробно описывать отдельные хромосомы и их участки. Запись имеет следующий формат:


[номер хромосомы] [плечо] [номер участка].[номер полосы]


длинное плечо хромосомы обозначают буквой q, короткое — буквой p, хромосомные аберрации обозначаются дополнительными символами.


Таким образом, 2-я полоса 15-го участка короткого плеча 5-й хромосомы записывается как 5p15.2.


Для кариотипа используется запись в системе ISCN 1995, имеющая следующий формат:


[количество хромосом], [половые хромосомы], [особенности].


Для обозначения половых хромосом у различных видов используются различные символы (буквы), зависящие от специфики определения пола таксона (различные системы половых хромосом). Так, у большинства млекопитающих женский кариотип гомогаметен, а мужской гетерогаметен, соответственно, запись половых хромосом самки XX, самца — XY. У птиц же самки гетерогаметны, а самцы гомогаметны, т.е. запись половых хромосом самки ZW, самца — ZZ.


В качестве примера можно привести следующие кариотипы:


  • нормальный (видовой) кариотип домашнего кота:


38, XY


  • индивидуальный кариотип лошади с «лишней» X-хромосомой (трисомия по X-хромосоме):


65, XXX


  • индивидуальный кариотип домашней свиньи с делецией (потерей участка) длинного плеча (q) 10-й хромосомы:


38, XX, 10q-


  • индивидуальный кариотип мужчины с транслокацией 21-х участков короткого (p) и длинного плеч (q) 1-й и 3-й хромосом и делецией 22-го участка длинного плеча (q) 9-й хромосомы (приведён на Рис. 3):


46, XY, t(1;3)(p21;q21), del(9)(q22)


Поскольку нормальные кариотипы являются видоспецифичными, то разрабатываются и поддерживаются стандартные описания кариотипов различных видов животных и растений, в первую очередь домашних и лабораторных животных и растений.


Аномальные кариотипы и хромосомные болезни


Нарушения нормального кариотипа у человека возникают на ранних стадиях развития организма: в случае, если такое нарушение возникает при гаметогенезе, в котором продуцируются половые клетки родителей, кариотип зиготы, образовавшейся при их слиянии, также оказывается нарушенным. При дальнейшем делении такой зиготы все клетки эмбриона и развившегося из него организма обладают одинаковым аномальным кариотипом.


Однако нарушения кариотипа могут возникнуть и на ранних стадиях дробления зиготы, развившийся из такой зиготы организм содержит несколько линий клеток (клеточных клонов) с различными кариотипами, такая множественность кариотипов всего организма или отдельных его органов именуется мозаицизмом.


Как правило, нарушения кариотипа у человека сопровождаются множественными пороками развития; большинство таких аномалий несовместимо с жизнью и приводят к самопроизвольным абортам на ранних стадиях беременности. Однако достаточно большое число плодов (~2.5%) с аномальными кариотипами донашивается до окончания беременности.












Некоторые болезни человека, вызванные аномалиями кариотипов



Кариотипы



Болезнь



Комментарий


47,XXY; 48,XXXY;


Синдром Клайнфельтера


Полисомия по X-хромосоме у мужчин


45X0; 45X0/46XX; 45,X/46,XY; 46,X iso (Xq)


Синдром Шерешевского — Тёрнера


Моносомия по X хромосоме, в т.ч. и мозаицизм


47,ХХX; 48,ХХХХ; 49,ХХХХХ


Полисомии по X хромосоме


Наиболее часто — трисомия X


47,ХХ, 21+; 47,ХY, 21+


Синдром Дауна


Трисомия по 21-й хромосоме


47,ХХ, 18+; 47,ХY, 18+


Синдром Эдвардс


Трисомия по 18-й хромосоме


47,ХХ, 13+; 47,ХY, 13+


Синдром Патау


Трисомия по 13-й хромосоме


46,XX, 5р-


Синдром кошачьего крика


делеция короткого плеча 5-й хромосомы


46 ХХ или ХУ, 15р-.


Синдром Прадера-Вилли


Аномалия 15 хромосомы



biofile.ru

Анализ кариограммы человека Понятие о кариотипе и кариограмме. Кариотип

Анализ кариограммы человека

1. Понятие о кариотипе и кариограмме.

Кариотип — это совокупность всех хромосом диплоидного набора клетки, который характеризуется количеством хромосом и особенностями строения каждой хромосомы. Для нормального кариотипа характерно следующее:


  • присутствует нормальное количество хромосом,

  • все хромосомы представлены парами гомологичных друг другу хромосом,

  • каждая хромосома имеет нормальное строение: характерное для нее расположение центромеры, соотношение и строение плеч, отсутствуют хромосомные мутации.

Кариограмма – это изображение всех хромосом диплоидного набора клетки, которые распределены по группам и расположены друг за другом в порядке уменьшения размеров с учетом индивидуальных особенностей каждой хромосомы.

Организмы разных видов различаются по кариотипу: по числу и/или индивидуальным особенностям тех или иных хромосом. Кариотип и хромосомы человека обладают многими признаками, общими для кариотипа и хромосом организмов других видов.


  1. Хромосомы состоят из хроматина – комплекса ДНК с многочисленными белками.

  2. Структурной единицей хроматина является нуклеосома – комплекс из четырех пар гистоновых белков, вокруг которого намотано около двух витков молекулы ДНК. В одной хромосоме находится только одна молекула ДНК, которая намотана на тысячи гистоновых комплексов.

  3. Разные участки хроматина различаются по степени конденсации, или упаковки в пространстве. Эухроматин слабо конденсирован и содержит активно функционирующие гены. Гетерохроматин сильно конденсирован и содержит нефункционирующие гены и участки ДНК, не содержащие гены. Участки гетерохроматина окрашиваются красителями сильнее, чем участки эухроматина и в микроскоп выглядят более темными.

  4. При делении клетки хроматин, конденсируясь, приобретает вид плотных палочковидных структур, особенно хорошо видимых в метафазу митоза.

  5. Диплоидный набор хромосом представляет собой набор пар гомологичных друг другу хромосом. Хромосомы каждой пары гомологичны друг другу и негомологичны всем остальным хромосомам. Кариотип человека включает в себя 46 хромосом: 22 пары аутосом и две половые хромосомы: две Х-хромосомы у женщин, Х- и Y-хромосомы у мужчин.

  6. Негомологичные хромосомы различаются по длине и форме, имеют приблизительно одинаковую толщину.

  7. Все хромосомы имеют два плеча и расположенный между ними истонченный участок – центромеру, или первичную перетяжку. В области первичной перетяжки расположен кинетохор – плоская структура, белки которой, взаимодействуя с микротрубочками веретена деления, обеспечивают перемещения хромосом во время деления клетки.

  8. Некоторые хромосомы имеют вторичную перетяжку, в области которой расположены гены рибосомных РНК, происходит синтез рРНК и образуется ядрышко ядра. У человека вторичную перетяжку имеют хромосомы 13, 14, 15, 21 и 22.

  9. В кариотипе находятся хромосомы трех типов, различающиеся по расположению центромеры и,соответственно, соотношению плеч.

  10. Концы каждой хромосомы – это теломеры. У человека ДНК теломерного участка представляет собой многократно повторяющуюся нуклеотидную последовательность 5′ ТТАГГГ 3′ в одной из нуклеотидных цепей ДНК.

  11. После каждого акта репликации и деления клетки происходит укорочение теломерных участков хромосом.

  12. В диплоидном наборе женских особей находится две Х-хромосомы, а в диплоидном наборе мужских особей – одна Х-хромосома и одна Y-хромосома. Х- и Y-хромосомы различаются по длине, форме и наборам генов. У человека ген SRY Y-хромосомы обусловливает развитие мужского пола.

  13. Во время профазы и метафазы митоза каждая хромосома состоит из двух одинаковых хроматид – одинаковых копий материнской хромосомы, образовавшихся после репликации ДНК.

2. Получение кариограммы.

Для изучения кариотипа обычно используют лейкоциты периферической крови, клетки красного костного мозга и некоторые другие клетки. При необходимости изучают клетки оболочек зародыша и плода, так как они имеют такой же кариотип и генотип, как клетки еще неродившегося организма, поскольку тоже являются потомками зиготы.

Клетки помешают в питательную среду и побуждают их к делению с помощью специальных стимуляторов деления. Одним из стимуляторов деления является вещество растительного происхождения фитогемагглютинин (ФГА). Фитогемагглютинин является углеводом обыкновенной фасоли Phaseolus vulgaris, способный агглютинировать эритроциты. Фитогемагглютинин является сильным митогеном – веществом, стимулирующим деление клеток путем митоза.

Под влиянием ФГА клетки начинает делиться путем митоза. Затем в культуральную среду с делящимися клетками добавляют колхицин. Это алкалоид растительного происхождения, обычно получаемый из безвременника (зимовника) осеннего (Colchicum autumnale) или других представителей семейства лилейные. Колхицин препятствует образованию микротрубочек из белка тубулина. В делящейся клетке микротрубочки входят в состав веретена деления и в норме сначала обеспечивают передвижение всех хромосом в область экватора веретена деления, а затем участвуют в расхождении хроматид каждой хромосомы в разные стороны, к разным полюсам веретена деления клетки. Поэтому в присутствии колхицина деление всех клеток останавливается на одной и той же стадии митоза: в конце профазы, непосредственно перед метафазой. В зарубежной научной литературе эта стадия называется прометафазой. В эту стадию все хромосомы полностью конденсированы и хорошо видны в световой микроскоп в виде палочковидных структур, расположенных в одной плоскости. Совокупность всех таких хромосом одной клетки называется метафазной пластинкой (рис.1).

Для удобства изучения живые клетки помещают в гипотонический раствор поваренной соли. В таком растворе вода заходит в клетку, клетка увеличивается в размере, и хромосомы более свободно распределяются в цитоплазме — на большем, чем прежде, расстоянии друг от друга.

Затем хромосомы окрашивают, фотографируют и изучают их изображение под микроскопом. Окраску проводят простыми, диффенциальными или флюоресцентными красителями, которые помогают идентифицировать хромосомы.

Рис.1. Метафазная пластинка человека.

1 – большая метацентрическая хромосома

2 – маленькая акроцентрическая хромосома

3 – большая субметацентрическая хромосома

4 – маленькая метацентрическая хромосома

5 – средняя акроцентрическая хромосома.

Как видно из рис.1, хромосомы различаются по размеру и форме. Все они имеют Х- или Y-образную форму, что обусловлено тем, что дочерние хроматиды – копии материнской хромосомы — остаются соединенными в области первичной перетяжки.

В метафазной пластинке каждая хромосома состоит из двух одинаковых хроматид. Для каждой хромосомы диплоидного набора имеется лишь одна, парная ей хромосома. Парные хромосомы называются гомологичными друг другу хромосомами. Гомологичные хромосомы имеют одинаковые внешние признаки: длину; форму (расположение первичной перетяжки и соответствие плеч, наличие или отсутствие вторичной перетяжки) и одинаковую степень конденсации хроматина в тех или иных участках: участки с сильно конденсированным хроматином выглядят темными, а участки со слабо конденсированным хроматином — более светлыми. По этим же признакам негомологичные друг другу хромосомы отличаются друг от друга. Различают следующие типы хромосом человека (рис.2):


  • Метацентрические, равноплечие хромосомы: первичная перетяжка (центромера) расположена в центре (посередине) хромосомы, плечи хромосомы одинаковые.

  • Субметацентрические, почти равноплечие хромосомы: центромера находится недалеко от середины хромосомы, плечи хромосомы незначительно отличаются по длине.

  • Акроцентрические, очень неравноплечие хромосомы: центромера находится очень далеко от центра (середины) хромосомы, плечи хромосомы существенно различаются по длине.

Рис.2. Типы хромосом человека.

Поскольку каждая пара гомологичных друг другу хромосом имеет характерные для них признаки, то это позволяет идентифицировать конкретные хромосомы. Идентифицировав хромосомы, строят кариограмму: располагают хромосомы в порядке уменьшения размера, раскладывая их по группам в зависимости от размера и формы. При построении кариограммы половые хромосомы располагают отдельно от аутосом, хотя Х-хромосома относится к хромосомам группы С, а Y-хромосома – к хромосомам группы G.

Кариограмму строят при изучении кариотипа конкретного человека. Обобщенная, идеализированная кариограмма, в которой представлены особенности кариотипа вида, называется идиограммой. Идентифицируя хромосомы и строя кариограмму конкретного человека, врач-генетик всегда имеет перед собой образец — идиограмму вида Человек разумный.

На рис. 3 представлена кариограмма мужчины с нормальным кариотипом. В прямоугольной рамке показаны половые хромосомы женщины с нормальным кариотипом.

Рис. 3.

Рис. 3. Нормальная кариограмма человека.

В первых семи рядах кариограммы представлены аутосомы групп A – G. Они одинаковы в кариотипах мужского и женского организмов. В последнем ряду представлены половые хромосомы. В мужском кариотипе это Х-хромосома группы С и Y-хромосома группы G. В женском кариотипе это две Х-хромосомы. Таким образом, кариограммы мужского и женского организмов легко отличить друг от друга: кариограмма женского организма содержит две одинаковые метацентрические хромосомы среднего размера – Х-хромосомы, а кариограмма мужского организма содержит две разные по размеру и форме хромосомы: одну метацентрическую хромосому среднего размера – Х-хромосому и одну акроцентрическую хромосому небольшого размера – Y-хромосому.

Процедура составления кариограммы вручную трудоемка и требует определенной последовательности действий. Составление кариограммы является частью лабораторной работы, которую выполняют студенты первого курса медицинского университета.

В последние годы для идентификации хромосом и построения кариограммы используют компьютерные программы. При этом изображение метафазной пластинки поступает в компьютер через видеокамеру, соединенную с люминесцентным микроскопом.

3. Лабораторная работа “Составление кариограммы человека”.

На лабораторной работе каждый студент получает конверт с набором из 45-47 изображений хромосом человека и лист бумаги с названиями групп хромосом. Задачей студента является правильное разложение хромосом по группам.

Работу по составлению кариограммы рекомендуют проводить в следующей последовательности:


  1. Все хромосомы в зависимости от формы разделите на две большие группы:


    • акроцентрические хромосомы

    • метацентрические и субметацентрические хромосомы

  2. Обратите внимание на акроцентрические хромосомы. Все акроцентрические хромосомы в зависимости от размера разделите на две небольшие группы:


    • средние акроцентрические хромосомы.

    • маленькие акроцентрические хромосомы

  3. Маленькие акроцентрические хромосомы – это хромосомы группы G. В нормальном кариотипе их может быть 4-5 хромосом в зависимости от пола человека. В нормальном женском кариотипе это 2 пары аутосом, в нормальном мужском кариотипе – 2 пары аутосом и одна Y-хромосома. У людей с с. Дауна и с. лишней Y-хромосомы группа G может содержать 5-6 хромосом. К сожалению, обычное окрашивание хромосом не позволяет с уверенностью различить хромосому 21-й пары и Y-хромосому. По этой причине набор изображений 5-и хромосом группы G может принадлежать и женщине с с. Дауна, и мужчине с с. Клайнфельтера, а набор изображений 6-и хромосом группы G может принадлежать и мужчине с с.Дауна, и мужчине с дополнительной Y-хромосомой в кариотипе. Если у вас всего 2 пары хромосом этой группы, то положите их изображения на лист с названиями групп хромосом напротив названия группы G. Если у вас имеется еще две хромосомы этой группы, то одну из них положите рядом с хромосомами 21-й пары, а другую – на место половых хромосом, считая ее Y-хромосомой. Если у вас имеется 5 хромосом этой группы, то до окончания составления кариограммы вы можете считать ее хромосомой 21-й пары или Y-хромосомой. В зависимости от вашего предварительного выбора положите 5-ю хромосому этой группы в соответствующее место листа с названиями групп хромосом.

  4. Средние акроцентрические хромосомы – это хромосомы группы D. В нормальном кариотипе их 3 пары. При с. Патау в кариотипе человека обнаруживается 7 хромосом этой группы за счет дополнительной хромосомы 13-й пары. Положите изображения хромосом группы D на лист с названиями групп хромосом в соответствующее место.

  5. Вы разложили все акроцентрические хромосомы. Теперь обратите внимание на оставшиеся не разложенными метацентрические и субметацентрические хромосомы. Все эти хромосомы в зависимости от размера разделите на две небольшие группы:


    • крупные и средние хромосомы

    • короткие и маленькие хромосомы.

  6. Обратите внимание на короткие и маленькие хромосомы последней группы. Выберите из них 2 пары самых маленьких метацентрических хромосом. Это хромосомы группы F. Положите изображения хромосом этой группы на лист с названиями групп хромосом в соответствующее место. Оставшиеся хромосомы – это хромосомы группы Е. В нормальном кариотипе их 3 пары. При с. Эдвардса в кариотипе человека обнаруживается 7 хромосом этой группы за счет дополнительной хромосомы 18-й пары. Положите изображения хромосом этой группы на лист с названиями групп хромосом в соответствующее место.

  7. Обратите внимание на оставшиеся не разложенными крупные и средние хромосомы. Выберите из них 3 пары самых крупных хромосом. Это метацентрические хромосомы группы А. Положите их изображения на лист с названиями групп хромосом.

  8. Из оставшихся хромосом выберите 2 пары самых больших хромосом. Это метацентрические хромосомы группы В. Положите их изображения на лист с названиями групп хромосом в соответствующее место.

  9. Все оставшиеся хромосомы – это субметацентрические хромосомы группы С. 7 пар хромосом этой группы – это аутосомы. Положите их изображения на лист с названиями групп хромосом напротив названия группы С. Все остальные хромосомы этой группы – это Х-хромосомы. Количество Х-хромосом в кариотипе конкретного человека может быть 1-3. Положите изображения Х-хромосом на лист с названиями групп хромосом в соответствующее место.

  10. Внимательно изучите составленную вами кариограмму. Кариограмма не должна содержать одновременно две крупные аномалии, поскольку это не встречается в реальной жизни. Это может случиться в том случае, если вы неправильно идентифицировали Y-хромосому, приняв ее за хромосому 21-й пары. Например, кариограмма не может содержать одновременно трисомию про 21-й хромосоме и моносомию по Х-хромосоме, то есть, кариограмма не может принадлежать человеку, страдающему одновременно с. Дауна и с.Шерешевского-Тернера. Скорее всего, в вашем распоряжении нормальная кариограмма мужчины. Для исправления ошибки достаточно перенести одну из 3-х хромосом 21-й пары на место расположения половых хромосом, поместив ее рядом с Х-хромосомой. При составлении кариограммы конкретного человека такая ситуация не возникает, так как еще до начала составления кариограммы известен пол человека и предварительный диагноз.

3. Анализ кариограммы человека.

При анализе кариограммы от студента требуется следующее:


  • уметь идентифицировать пол человека

  • уметь идентифицировать нормальный кариотип человека

  • уметь идентифицировать наличие хромосомного заболевания, связанного с аномалией числа хромосом (с. Дауна, с. Клайнфельтера, с. Шерешевского-Тернера, с. Трисомии — Х, с. Патау, с. Эдвардса, с. лишней Y-хромосомы).

Анализируя кариограмму, обращают внимание на следующие ее признаки:


  • общее количество хромосом;

  • парность или непарность тех или иных хромосом;

  • количество и вид половых хромосом;

  • наличие тех или иных аномалий числа хромосом.

При анализе кариограммы человека следует придерживаться следующей последовательности действий.


    • Пронумеруйте пары гомологичных хромосом; нумеруйте их даже в том случае, если гомологичные хромосомы представлены не двумя, а одной или тремя хромосомами.

    • Найдите на кариограмме аутосомы и половые хромосомы. Половые хромосомы обычно располагают отдельно от аутосом. Нормальная кариограмма содержит 22 пары аутосом и 1 пару половых хромосом. Кариограмма больного человека может содержать 45- 46 аутосом и 1-3 половых хромосомы.

    • Определите пол человека по его кариограмме. Для этого внимательно изучите половые хромосомы.

    • Если все они одинаковые, среднего размера и метацентрические, значит все они – Х-хромосомы, а перед вами кариограмма женского организма.

    • Если среди половых хромосом есть небольшая акроцентрическая хромосома, значит это – Y-хромосома, а перед вами кариограмма мужского организма.

    • Посмотрите, все ли хромосомы представлены парами.

    • Если кариограмма содержит 23 пары хромосом, значит перед вами нормальная кариограмма человека.

    • Если в кариограмме те или иные хромосомы представлены 1 или 3 хромосомами, значит перед вами кариограмма с геномной мутацией – отсутствием или избытком хромосом. В этом случае кариограмма содержит 45 или 47 хромосом.

    • Определите порядковый номер пары хромосом, в которой обнаружена геномная мутация. Наиболее часто встречаются следующие аномалии:

    • аномалии числа аутосом:

— дополнительная хромосома 13-й пары при с. Патау

— дополнительная хромосома 18-й пары при с. Эдвардса

— дополнительная хромосома 21-й пары при с. Дауна


  • аномалии числа половых хромосом:

— дополнительная Х-хромосома в женской кариограмме при с. Трисомии-Х

— дополнительная Х-хромосома в мужской кариограмме при с. Клайнфельтера

— дополнительная Y-хромосома в мужском кариотипе при с. лишней Y-хромосомы

— нехватка Х-хпромосомы в женском кариотипе при с. Шерешевского-Тернера.

а) запись общего числа хромосом,

б) запись сочетания половых хромосом,

в) сведения об аномалии числа хромосом (если имеется): указывают хромосому и вид аномалии. Например:

— формула кариотипа женщины, страдающей синдромом Дауна: 47, ХХ, 21+;

— формула кариотипа мужчины, страдающего синдромом Клайнфельтера: 47, ХХY,

— формула кариотипа женщины с синдромом Шерешевского-Тернера: 45, Х0.

4. Пример анализа кариограммы человека.

Упражнение. Сделайте анализ кариограммы человека (рис.4).

Рис. 4. Кариограмма человека.

Кариограмма человека содержит 47 хромосом. Большинство хромосом расположено в порядке уменьшения их размеров. Это аутосомы. В нижнем ряду в стороне от них расположены три хромосомы. Это половые хромосомы. Все аутосомы представлены парами. Всего в кариограмме 22 пары аутосом. Половых хромосом – 3. Две из них – крупные и их первичная перетяжка – центромера – расположена почти посередине. Это Х-хромосомы. Рядом с ними находится небольшая хромосома с первичной перетяжкой, расположенной ближе к краю хромосомы. Это – Y-хромосома. Кариограмма принадлежит представителю мужского пола, так как имеется Y-хромосома. Кариограмма содержит аномалию: лишнюю Х-хромосому. Такая кариограмма характерна для особей мужского пола, страдающих синдромом Клайнфельтера: у больных отмечается евнухоидное телосложение, иногда увеличены молочные железы, слабое оволосение на лице, часто отмечается умственная отсталость, инфантилизм, они бесплодны. Формула кариотипа человека — 47, ХХY.

5. Задание для самостоятельной работы.

Проведите анализ следующих кариограмм.

Кариограмма 1.

Кариограмма 2.

Кариограмма 3.

Кариограмма 4.

6. Совершенствование в изучении кариограммы человека.

6.1. Дифференциальное окрашивание хромосом

Современные цитогенетические ме­тодики позволяют идентифицировать по морфологии все пары хромосом на препарате. Суть этих ме­тодик состоит в дифференциальном окрашивании хромосом по длине, что обеспечивается сравнитель­но простыми температурно-солевыми воздействиями на фиксированные хромосомы или использованием спе­цифических красителей. Дифференциальное окрашивание при­водит к появлению линейного рисунка по длине хромосомы.

Несмотря на большое разнообразие способов обработки хромосомных пре­паратов и красителей, выявляемый ли­нейный рисунок хромосомы всегда один и тот же. Он меняется только в зависимости от степени конденсиро­ванного состояния хромосомы. Сегмент, види­мый как одна полоса в метафазной хромосоме, в менее конденсированной прометафазной хромосоме, может предстать в виде нескольких мелких полос.

Дифференциальное окрашивание в зависимости от используемого метода может охватывать либо всю длину хро­мосомы, либо ее центромерный район.

Представление о рисунке диффе­ренциально окрашенных по всей дли­не хромосом можно получить, окраши­вая препараты по G-методу с исполь­зованием красителя Гимзы (рис. 5). В этом случае хромосомы выглядят состоя­щими из поперечно-исчерченных, по-разному окрашенных сегментов. Каж­дой паре хромосом присущ индивиду­альный рисунок исчерченности за счет неодинаковых размеров сегментов. В мелких хромосомах рисунок образует­ся единичными сегментами, в крупных хромосомах сегментов много. Общее для нормального хромосомного набо­ра число окрашенных и неокрашенных сегментов в метафазе составляет около 400. В прометафазных хромосомах оно увеличивается до 850 и более.

Рис. 5. Схематическое изображение хромосом человека при Gокрашивании в соответствии с международной классификацией

6.2. Метод флюоресцентной гибридизации in situ.

Успехи молекулярной цитогенетики человека позволили разработать новые методы изучения хромосом. Одним из них является метод флюоресцентной гибридизации in situ (FISH). Это метод основан на комплементарном взаимодействии ДНК изучаемого объекта с небольшой искусственной последовательностью нуклеотидов ДНК, называемой ДНК-зондом. ДНК-зонд соединен с флюоресцирующим веществом. Комплементарное взаимодействие ДНК изучаемого объекта и ДНК-зонда называется гибридизацией ДНК. Если гибридизация происходит, то это событие фиксируется люминесцентным микроскопом и свидетельствует о наличии в исследуемом образце фрагмента ДНК, комплементарного ДНК-зонду. С помощью этого метода, имея набор разных ДНК-зондов, можно даже в неделящейся клетке выявить аномалию числа хромосом и наличие патологического гена, а также выявить мелкие хромосомные мутации, которые трудно обнаружить обычными способами. При этом разные хромосомы или их участки выглядят как разноцветные структуры (рис. 6, 7).

Рис. 6. Нормальная женская кариограмма человека, полученная при использовании методики спектрального кариотипирования .

Рис. 7. Кариограмма мужчины с переносом участка 1-й хромосомы на 3-ю и потерей участка 9-й хромосомы.

Поделитесь с Вашими друзьями:

zodorov.ru

Кариотип — Википедия

Материал из Википедии — свободной энциклопедии

Рис. 1. Изображение набора хромосом (справа) и систематизированный женский кариотип 46 XX (слева). Получено методом спектрального кариотипирования.

Кариоти́п — совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом, присущая клеткам данного биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток. Кариотипом иногда также называют и наглядное представление полного хромосомного набора (кариограммы).

История термина[ | ]

Л. Н. Делоне предложил термин «кариотип» в своей работе «Сравнительно-кариологическое исследование видов Muscari Mill. и Bellevalia Lapeyr», статья была опубликована в 1922 году в «Вестнике Тифлисского ботанического сада»[1][2]. Л. Н. Делоне определил кариотип как совокупность хромосом в наборе, определяемая их числом, величиной и формой[3]. Л. Н. Делоне предположил, что все виды рода имеют одинаковый набор хромосом («кариотип»), разные роды, по мнению Делоне, обязательно различаются кариотипически[4]. Г. А. Левитский на основании собственных исследований показал, что это не соответствует действительности, и в своей книге «Материальные основы наследственности» развил и уточнил термин «кариотип»[5][6]. В разработке термина участвовали также Сирил Дин Дарлингтон и Майкл Дж. Д. Уайт.

Определение кариотипа[ | ]

Внешний вид хромосом существенно меняется в течение клеточного цикла: в течение интерфазы хромосомы локализованы в ядре, как правило, деспирализованы и труднодоступны для наблюдения, поэтому для определения кариотипа используются клетки в одной из стадий их деления — метафазе митоза.

Процедура определения кариотипа[ | ]

Для процедуры определения кариотипа могут быть использованы любые популяции делящихся клеток. Для определения человеческого кариотипа используют, как правило, лимфоциты периферической крови, переход которых от стадии покоя G0 к пролиферации провоцируют добавлением митогена фитогемагглютинина. Для определения кариотипа могут быть использованы также клетки костного мозга или первичная культура фибробластов кожи. Для увеличения числа клеток на стадии метафазы к культуре клеток незадолго перед фиксацией добавляют колхицин или [en], которые блокируют образование микротрубочек, тем самым препятствуя расхождению хроматид к полюсам деления клетки и завершению митоза.

После фиксации препараты метафазных хромосом окрашивают и фотографируют; из микрофотографий формируют так называемый систематизированный кариотип — нумерованный набор пар гомологичных хромосом, изображения хромосом при этом ориентируются вертикально короткими плечами вверх, их нумерация производится в порядке убывания размеров, пара половых хромосом помещается в конец набора (см. Рис. 1).

Исторически первые недетализованные кариотипы, позволявшие проводить классификацию по морфологии хромосом, получали окраской по Романовскому — Гимзе, однако дальнейшая детализация структуры хромосом в кариотипах стала возможной с появлением методик дифференциального окрашивания хромосом. Наиболее часто используемой методикой в медицинской генетике является метод G-дифференциального окрашивания хромосом.

Классический и спектральный кариотипы[ | ]

Рис. 2. Пример определения транслокации по комплексу поперечных меток (полоски, классический кариотип) и по спектру участков (цвет, спектральный кариотип).

Для получения классического кариотипа используется окраска хромосом различными красителями или их смесями: в силу различий в связывании красителя с различными участками хромосом окрашивание происходит неравномерно и образуется характерная полосчатая структура (комплекс поперечных меток, англ. banding), отражающая линейную неоднородность хромосомы и специфичная для гомологичных пар хромосом и их участков (за исключением полиморфных район

encyclopaedia.bid

Отправить ответ

avatar
  Подписаться  
Уведомление о