Поваренная соль
Натрий хлор соленая на вкус.
Коль в пище нет – беда!И если ноту СОЛЬ об этом спросят,Подарит песню «соло» навсегда!
У римлян ни одно жертвоприношение не обходилось без соли.
Так в Тигровой пещере при колебаниях воздуха возникают красивые, мелодичные звуки.
«Не хвали с трех дней, а хвали с трех лет»
1. составная часть продуктов2. консервирование3. производство мыла и хлора4. кожевенная промышленность
Ag NO3 + NaCl = AgCl+NaNO3
СОЛЬ NaCl – источник пополнения казны:1.Высокие налоги – восстания в России –бунт в 1648 г. Был жестоко подавлен, а соль осталась дорогой и дефицитной.
Ионов K в нервной ткани в два раза больше, чем ионов Na..Знаете ли Вы?
|
rpp.nashaucheba.ru
Натрия хлорид в воде — Справочник химика 21
О 2-73. Необходимо из хлорида алюминия, серной кислоты, гидроксида натрия и воды получить в чистом виде четыре соли и кислоту. Как это осуществить Ответ поясните уравнениями реакций. [c.19]В этой реакции происходят восстановление ионов натрия и окисление хлорид-ионов. Электролиз может также осуществляться путем пропускания электрического тока через растворы солей (рис. 1-9). Если через раствор хлорида натрия в воде пропускать электрический ток, на аноде собирается газообразный хлор, но на катоде выделяется уже не металлический натрий, а газообразный водород [c.42]
Природные растворимые соли встречаются в виде солевых залежей или естественных растворов (рассолы, рапы) озер, морей и подземных источников. Основные составляющие солевых залежей или рапы соляных озер хлорид натрия, сульфат натрия, хлориды и сульфаты калия, магния и кальция, соли брома, бора, карбонаты (природная сода). Советский Союз обладает мощными месторождениями ряда природных солей. В СССР имеется более половины разведанных мировых запасов калийных солей (60%) и огромные ресурсы природного и коксового газа для получения азотнокислых и аммиачных солей (азотных удобрений). В СССР есть большое количество соляных озер, рапа которых служит источником для получения солей натрия, магния, кальция, а также соединений брома, бора и др. Основными методами эксплуатацни твердых солевых отложений являются горные разработки в копях и подземное выщелачивание. Добычу соли в копях ведут открытым или подземным способом в зависимости от глубины залегания пласта. Таким путем добывают каменную соль, сульфат натрия (тенардит), природные соли калия и магния (сильвинит, карналлит) и т. д. Подземное выщелачивание является способом добычи солей (главным образом поваренной соли) в виде рассола. Этот метод удобен, когда поваренная соль должна применяться в растворенном виде — для производства кальцинированной соды, хлора и едкого натра и т. п. Подземное выщелачивание ведут, размывая пласт водой, накачиваемой в него через буровые скважины. Естественные рассолы образуются в результате растворения пластов соли подпочвенными водами. Добыча естественных рассолов производится откачиванием через буровые скважины при помощи глубинных насосов или сжатого воздуха (эрлифт). Естественные растворы поваренной соли, используемые как сырье для содовых и хлорных заводов, донасыщают каменной солью в резервуарах-сатураторах и подвергают очистке. Иногда естественные рассолы
Хранят в сухом месте, при комнатной температуре, с предосторожностью (список Б). Срок годности 3 года. Применяют внутримышечно по 0,5—I г в сутки для детей в возрасте до 3 лет — 0,2—0,25 г, от 4 до 7 лет — 0,25—0,3 г от 8 до 12 лет — 0,3—0,5 г. Растворы дигидрострептомицина готовят непосредственно перед употреблением. Необходимое количество препарата растворяют в 2—3 мл стерильного изотонического раствора натрия хлорида, воды для инъекций или 0,25—0,5%-ного раствора новокаина. Выпускают во флаконах, содержащих 500 ООО ЕД и 1 ООО ООО ЕД дигидрострептомицина.
Когда раствор хлорида натрия в воде (рассол) подвергается электролизу, образуются газообразные хлор (С12> на аноде и водород (Нг) на катоде (рис. УИ1.15). Ионы натрия остаются в растворе, но в результате электролиза соответствующие им хлорид-ионы замещаются на гидроксид-ионы [c.534]
Скорости движения ионов Ыа+иС1-вО,1 н. растворе хлорида натрия в воде при 298 К соответственно равны 42,6-10 = и 68,0-10 = см В -с . Рассчитайте удельную электропроводность этого раствора. [c.58]
В лабораторных условиях азот можно получить взаимодействием растворов хлорида аммония и нитрита натрия. Учтя, что при этом образуются также хлорид натрия и вода, составьте уравнение реакции и вычислите, сколько граммов хлорида аммония необходимо для получения 2 моль газа азота.
Высшие ненасыщенные альдегиды, у которых двойная связь находится между а- и -углеродными атомами, могут быть легко получены по ранее упоминавшемуся методу — отщеплением воды от двух молекул альдегида при действии разбавленных щелочей, карбонатов, а также ацетата натрия, хлорида цинка или солей вторичных аминов, например пиперидина (синтез Кневенагеля). Первая стадия этой реакции представляет собой альдольную конденсацию [c.215]
Обязательным условием получения дисперсных систем является взаимная нерастворимость диспергируемого вещества и дисперсионной среды. Например, нельзя получить коллоидные растворы сахара или хлорида натрия в воде, но они могут быть получены в керосине илн в бензоле, в которых эти вещества практически нерастворимы.
Выполнение работы. 1. Построение градуировочного графика. Для построения градуировочного фафика приготавливают серию разбавленных стандартных растворов хлорида натрия в воде. [c.186]
При коксовании сырья с добавкой едкого натра требуется тщательная отмывка минеральных примесей, которая возможна только для измельченного кокса. В промывных водах содержатся сульфат натрия, хлориды натрия и свободная щелочь. [c.158]
Будет ли отличаться температура замерзания I М раствора хлорида натрия в воде от температуры замерзания I М раствора сахара в воде [c.195]
Написать уравнение реакции окисления сульфита натрия хлоридом железа (III), учитывая, что в реакции принимает участие вода. [c.212]
Запорная жидкость, применяемая в газометрах и газовых пипетках,— это насыщенный водный раствор хлорида натрия, хлорида кальция или сульфата натрия. Лучшая и наиболее доступная жидкость — рассол хлорида натрия. Его готовят, насыщая воду техническим хлоридом натрия, рассолу дают отстояться и фильтруют. Градуируют газометр, сливая воду в мерный цилиндр через нижний кран с открытым верхним краном. Кран воронки
В зависимости от характера веществ, подвергаемых сушке, а также от природы растворителя, который нужно удалить, эксикаторы снаряжаются теми или иными осушающими веществами. Для связывания паров воды или спирта применяют едкий натр, хлорид кальция, оксид фосфора (V) (фосфорный ангидрид), серную кислоту. Последние два осушителя пригодны для связывания кетонов. Заполнять вакуум-эксикатор серной кислотой нельзя. [c.43]
Путем выпаривания досуха 200 г насыщенного при 10 °С раствора хлорида натрия получено 52,64 г соли. Чему равна растворимость хлорида натрия в воде при 10 °С [c.20]
Определите число независимых компонентов в следующих системах а) жидкая вода, б) раствор сахара в воде, в) раствор хлорида натрия в воде, г) раствор хлорида и нитрата натрия в воде, д) раствор хлорида натрия и нитрата калия в воде. [c.187]
Натрий образует соли со всеми кислотами. Почти все они растворимы в воде. Важнейшие соли натрия — хлорид натрия (поваренная соль), сода и сульфат натрия. [c.173]
Сульфат натрия, хлорид лития, сульфат аммония, иодистый натрий, бертоллетова соль не приводят к существенному ухудшению устойчивости мицеллярного раствора [31]. Вместе с тем отрицательное влияние соли на устойчивость системы возрастает с повышением обводненности раствора (44]. Максимально допустимая концентрация соли при обводненности 20, 50 и более 60 % составляет соответственно 12—15, 8—10, 2—5 г/л, а в мицеллярные растворы с обводненностью 90 % можно добавлять лишь небольшое количество солей. При высокой минерализации (более 5 %) воды мицеллярные растворы на основе обычных ПАВ (нефтяных сульфонатов) становятся неустойчивыми. Здесь необходимы ПАВ другого типа, например, алкилфенолы [31].
Изучите количественно растворимость хлорида натрия в воде и в растворах соляной кислоты. Возьмите пипеткой (на 5 или 10 мл) определенное количество раствора н перенесите его в заранее взвешенный бюкс (стаканчик, фарфоровую чашку и т. п.). Выпарьте в сушильном щкафу воду и взвесьте бюкс с сухими кристаллами. Вычислите растворимость хлорида натрия в воде.
Так, например, растворимость кварца резко возрастает при высоких давлениях и температурах, если к воде добавлены оксид натрия, хлорид натрия и др. Аналогично сульфаты натрия и калия сильно увеличивают свою растворимость при добавлении к воде некоторых хлоридов. Эти явления имеют большое значение для вы-ран ивания кристаллов и синтеза минералов. [c.76]
ПОВЫШЕНИЕ ТЕМПЕРАТУРЫ КИПЕНИЯ РАСТВОРА ХЛОРИДА НАТРИЯ В ВОДЕ [c.29]
Натрий. Физико-химические свойсгва. Взаимодействие с водой, кислородом, хлором. Получение натрия в промышленности. Важнейщие соединения натрия-хлорид, гидроксид, карбонат. Получение в промышленности и применение.
В отдельности. В табл. 1 приведены данные по совместной растворимости хлоридов калия и натрия в воде при разных температурах. [c.84]
Оборудование и реактивы. Установка для определения фосфористого водорода (рис. 31). Иод (0,01 н. раствор). Тиосульфат натрия (0,01 и. раствор). Крахмал (0,5%-ный раствор). Хлорид кадмия. Уксусная кислота (80— 90%). Ацетат натрия. Дистиллированная вода. [c.107]
СРАВНЕНИЕ ЭЛЕКТРОПРОВОДНОСТИ ХЛОРИДА НАТРИЯ, САХАРА, ВОДЫ И УКСУСНОЙ КИСЛОТЫ [c.33]
Опыт 1. Налить в пробирки по 2—3 мл растворов хлорида натрия, сульфата калия, карбоната натрия, ацетата натрия, хлорида цинка, сульфата алюминия. В контрольную пробирку налить 2—3 мл дистиллированной воды. С помощью растворов индикаторов (лакмуса, метилового оранжевого, фенолфталеина) определить реакцию среды. Объяснить результаты и написать уравнения соответствующих реакций (в молекулярной и ионмо-молекуляриой формах).
Оборудование и реактивы. Два демонстрационных бокала 2н. растворы едкого натра, хлоридов кобальта (II) и никеля (II), бромная вода. [c.135]
Гипохлоритные сточные воды с содержанием активного хлора ниже 50 г/л и гипохлоритные стоки со значительным содержанием активного хлора в небольших количествах целесообразно подвергать обезвреживанию, ликвидируя токсичность стоков. При исследовании устойчивости НСЮ мы отмечали, что введение даже малых количеств альдегида в раствор №1зывает мгновенное разложение НСЮ за счет быстрого химического взаимодействия с выделением тепла. Известно также [238, 239], что с гипохлоритами кальция и натрия формальдегид образует хлориды, воду и углекислый газ. [c.131]
Хлорорганические соединения, содержащиеся в небольшом количестве, растворимы в нефти и не вымываются водой в процессе обессоливания на ЭЛОУ. Для их удаления при обессоливанин необходимо применять реагенты, которые разлагают хлорорганические соединения и превращают их в водорастворимые вещества. Лабораторными исследованиями установлено, что щелочь при определенных условиях способствует частичному разложению хлорорганических соединений с образованием хлорида натрия, и тем самым снижает количество коррозионного хлористого водорода, выделяемого при перегонке нефти. Образовавшийся хлорид натрия вымывается водой на ЭЛОУ. [c.123]
Последовательность выполнения работы. Приготовить растворы соли (например, хлорида натрия) в воде концентрации (моль/1000 г) 1 2 3 4 5. На установке, описанной на с. 162, измерить давление насыщенного пара чистой воды и над приготовленными растворами, начиная с меньших концентраций. Измерения провести при температурах (°С) 50, 60, 70. На основании полученных экспериментальных данных а) рассчитать активность воды в указанных растворах при различных температурах по формуле б) построить график в координатах lgaпJO—1/7 и по тангенсу угла наклона кривой определить парциальную молярную т лоту растворения воды, ДЯ,, при разных концентрациях соли (дЯр5 д = 2,3 а) в) рассчитать химические [c.178]
Определим количество раствора, остающегося после выделения КС1 (в точке п) по пеизменяющемуся компоненту — хлориду натрия или воде [c.461]
Огнегасительные свойства воды повышают, растворяя в ней такие соли, как двууглекислый натрий, хлорид натрия, хлорид кальция, хлорид алюминия. При тушении волокнистых веществ и материалов для улучшения смачиваемости в воду добавляют поверхностно-активные вещества (смачиватели) типа сульфано-лов, сульфанатов и др. [c.220]
Метасилнкат натрия Хлорид кальция Мылонафт Вода [c.107]
Последовательность выполнения работы. 1. Взвесить тщательно высушенный пикнометр на аналитических весах. 2. Взвесить пикнометр, заполненный дистиллированной водой. 3. Приготовить растворы хлорида натрия в воде с концентрациями моль 1000 г) 1,0, 2,0, 3,0, 4,0, 5,0 и 5,5. 4. Определить плотности всех растворов пикнометрически. 6. Рассчитать объемы растворов, содержащих 1000 г воды. [c.450]
Еще современник Грэма И. Г. Борщев указывал на возможность кристаллического строения частиц, присутствующих в коллоидных растворах. Позднее, в начале XX века русский ученый П. П. Веймарн показал, что одно И то же вещество может в одних условиях обладать свойствами кристаллоида, а в других условиях давать коллоидные растворы. Так, канифоль при растворении в спирте образует истинный раствор, а в воде — коллоидный раствор. Наоборот, хлорид натрия в воде дает истинный раствор, а в бензоле — коллоидный. Таким образом, правильнее говорить не о коллоидном веществе, а о коллоидном состоянли вещества. [c.12]
АЦЕТОН (диыетилкетон) СНзСОСНд — простейший представитель кетонов, бесцветная жидкость с характерным запахом, т. кип. 56,24° С, смсишвается с водой и органическими растворителями. В промышленности А, получают из пропилена, а также одновременно с фенолом т. наз. кумол-гидропероксидным способом. А. получают также брожением крахмала под влиянием специальных бактерий. А. содержится в моче больных диабетом. А. является хорошим растворителем многих органических веществ ацетилцеллюлозы, нитроцеллюлозы, жиров, воска, резины, ацетилена и др., а также целого ряда неорганических солей хлорида кальция, иодида натрия, хлорида ртути и др. Применяется в пищевой и фармацевтической промышленности, в производстве искусственного шелка, бездымного пороха, в химической промышленности и в лабораторной практике как растворитель. [c.36]
Составные части системы — простые вещества или химические соединения, входящие в систему, которые могут быть выделены и могут существовать в и.эолированном виде. Составными частями раствора хлорида натрия являются вода и Na l, но не ионы СГ и Na+, так как они не могут быть выделены в химических реакциях и не могут существовать изолированно. [c.14]
Зонная плавка может применяться также и для очистки солей, которые не разлагаются при плавлении. За ходом очистки можно следить, используя различные физические методы (электропроводность, твердость и т. д.), а также проводить анализ состава конца слитка и загрязненного. Например, кристаллогидраты сульфата натрия, хлоридов кобалр>та и никеля легко плавятся (растворяются в кристаллпзациопноп воде). Примеси солей железа оттесняются к концу слитка. [c.70]
Прнборы и реактивы прибор для удаления обшей жесткости воды, ступка фарфоровая, бюретка емкостью 50 мл, цилиндры мерные емкостью ЮО, 50, 10 мл, пипетка емкостью 50 мл, колба коническая емкостью 300 мл — 3 шт., палочка стеклянная — 4 шт., микрошпатели, спиртовка, штативы металлические, штатив с пробирками, хлорид натрия, хлорид меди (II), фенол, четыреххлористый углерод, ацетон, щавелевая кислота, карбонат натрия. [c.100]
Механизм электролитической диссоциации позднее получил объяснение в связи с разработкой теории химической связи и химического равновесия. Распад электролита на ионы в растворе происходит в результате сложного физико-химического взаимодействия молекул с полярными молекулами воды. Если поместить кристаллы хлорида натрия в воду, то полярные молекулы воды принимают упорядоченное 5аправленное положение по отношению к ионам в кристаллической решетке соли. Под влиянием этого взаимодействия и леплового движения молекул воды хлорид натрия распадается на ионы НаС1г Ыа +СГ [c.116]
chem21.info
хлорид натрия
Государственное образовательное учреждение
Высшего профессионального образования
«Пермская государственная фармацевтическая академия
Федерального агентства по здравоохранению и социальному развитию
Российской Федерации»
кафедра аналитической химии
Курсовая работа:
Хлорид натрия.
Выполнил:
студент 21 группы
Сенников Антон
Проверил:
Колотова
Нина Васильевна
Пермь, 2010
Содержание.
Общие сведения 3
Получение 4
Качественный анализ 5
Аналитические реакции катиона натрия 5
Аналитические реакции хлорид-иона 5
Количественный анализ 6
Аргентометрия 6
Комплексонометрия 6
Применение 7
Список использованной литературы 8
2
Общие сведения.
Хлори́д на́трия — химическое соединение NaCl, натриевая соль соляной кислоты, хлористый натрий.
Хлорид натрия известен в быту под названием поваренной соли, основным компонентом которой он является. Хлорид натрия в значительном количестве содержится в морской воде, создавая её солёный вкус. Встречается в природе в виде минерала галита (каменная соль).
Чистый хлорид натрия имеет вид бесцветных кристаллов. Но с различными примесями его цвет может принимать: голубой, фиолетовый, розовый, жёлтый или серый оттенок.
Хлорид натрия образует кристаллы с кубической симметрией. Более крупные ионы хлора образуют плотную кубическую упаковку, в свободных узлах которой (в вершинах правильного октаэдра) расположены ионы натрия.
Умеренно растворяется в воде, растворимость мало зависит от температуры: коэффициент растворимости NaCl (в г на 100 г воды) равен 35,9 при 21° С и 38,1 при 80° С. Растворимость хлорида натрия существенно снижается в присутствии хлороводорода, гидроксида натрия, солей — хлоридов металлов. Растворяется в жидком аммиаке, вступает в реакции обмена.
Систематическое наименование: хлорид натрия / Sodium chloride
Химическая формула: NaCl
Молярная масса: 58.44277 г/моль
Физические свойства:
Плотность: 2.165 г/см3
Термические свойства:
Температура плавления 800,8 °C
Температура кипения 1465 °C
Химические свойства:
Растворимость в воде 35.9 г/100 мл
3
Получение.
Первым способом получения натрия стала реакция восстановления карбоната натрия углем при нагревании тесной смеси этих веществ в железной ёмкости до 1000°C:
Na2CO3+2C=2Na+3CO
Затем появился другой способ получения натрия — электролиз расплава едкого натра или хлорида натрия.
4
Качественный анализ.
3.1. Аналитические реакции на катион натрия.
1) С ацетатом диоксоуран (VI) цинка с образованием жёлтого кристаллического осадка или жёлтых кристаллов татра- и октаэдрической формы:
NaCl + Zn(UO2)3(CH3COO)8 + CH3COOH + 9H2O ↔
↔ NaZn(UO2)3(CH3COO)9 x 9H2O↓ + HCl
2) Окрашивание бесцветного пламени горелки в жёлтый цвет;
3) Реакция с гексагидроксостибатом (V) калия с образованием белого кристаллического осадка, растворимого в щелочах:
NaCl + K[Sb(OH)6] ↔ Na[Sb(OH)6]↓ + KCl
В кислой среде реагент разрушается с образованием белого аморфного осадка метасурьмяной кислоты HSbO3:
K[Sb(OH)6] +HCl ↔ KCl + H3SbO4 + 2H2O
H3SbO4 ↔ HSbO3↓ + H2O
3.2. Аналитические реакции на хлорид-ион.
С групповым реагентом – раствором AgNO3:
Методика: К 2 каплям раствора, содержащего хлорид-ионы, прибавляют 1 каплю разбавленной HNO3 и 3 капли раствора AgNO3. Наблюдаемый белый творожистый осадок растворим в NH4OH и насыщенном растворе (NH4)2CO3.
Раствор [Ag(NH3)2]Cl делят на 2 части: к одной добавляют концентрированную HNO3 до кислой реакции среды, к другой – концентрированный раствор KJ. Наблюдают выпадение осадков или помутнение раствора:
[Ag(NH3)2]Cl + 2HNO3 ↔ AgCl↓ + 2 NH4NO3
[Ag(NH3)2]Cl + KJ + 2H2O ↔ AgJ↓ + KCl + 2NH4OH
5
Количественный анализ.
4.1. Аргентометрия.
Стандартизация 0,05 М раствора нитрата серебра по стандартному раствору хлорида натрия (способ пипетирования).
NaCl + AgNO3 → AgCl↓ + NaNO3
в конечной точке титрования: K2CrO4 + 2AgNO3 → Ag2CrO4↓ + 2KNO3
М(NaCl) = 58,44 г/моль
М(AgNO3) = 169,87 г/моль
Методика: Аликвотную часть приготовленного стандартного раствора хлорида натрия помещают в колбу для титрования, разбавляют дистиллированной водой вдвое, прибавляют две капли раствора хромата калия и титруют раствором нитрата серебра до оранжево-жёлтого окрашивания осадка.
4.2. Комплексонометрия.
Стандартизация 0,01 М раствора перхлората ртути по стандартному раствору хлорида натрия (способ пипетирования)
2NaCl + Hg(ClO4)2 ↔ HgCl2 + 2 NaClO4
M (NaCl) = 58,44 г/моль
Методика: Точный объём стандартного раствора хлорида натрия помещают в колбу для титрования, прибавляют 4 капли разведённой азотной кислоты (1:4), 4 капли 4 капли спиртового насыщенного раствора дифенилкарбазона и титруют 0,01 М раствором перхлората ртути до розовато-фиолотовой окраски раствора.
6
5. Применение.
Если в 1 литре воды растворить 9 граммов соли, то концентрация ее в полученном растворе будет такой же, как в жидкостях и тканях организма (0,9%). Такую концентрацию называют изотонической. Более высокое содержание хлористого натрия в растворах действует как противомикробное, прекращает процессы брожения и гниения. На этом основано применение его для засолки (консервирования) мяса и овощей.
При приеме внутрь соль усиливает выделение пищеварительных соков, активизирует сокращениежелудка и кишечника, разжижает слизь, улучшает всасывание в желудочно-кишечном тракте. В больших дозах ядовита, особенно для кур, свиней, собак и кошек. Назначают внутрь как вкусовое и кормовое, улучшающее пищеварение вещество в форме порошка в смеси с кормом или в виде соли-лизунца.
7
6. Список литературы.
Ключинов Н.Г. «Неорганический синтез», Москва, 1988;
Лурье Ю.Ю. «Справочник по аналитической химии», Москва, 1979;
Методическое пособие по аналитической химии. «Инструментальные методы анализа», Пермь, 2004;
Методическое пособие по аналитической химии. «Качественный химический анализ», Пермь, 2003;
Методическое пособие по аналитической химии. «Количественный химический анализ», Пермь, 2004;
Рабинович В.А., Хавин З.Я. «Краткий химический справочник», Ленинград, Химия, 1977;
Томас Ч.Ф. «Безводный синтез в органической химии» (перевод с английского), Москва, 1949;
Харитонов Ю.Я. «Аналитическая химия», в 2х книгах, Москва, 2001.
8
studfiles.net
Хлорид натрия | |
---|---|
Общие | |
Систематическое наименование | Хлорид натрия |
Традиционные названия | Соль, поваренная соль, столовая соль, пищевая соль, каменная соль, галит[1] |
Хим. формула | NaCl |
Физические свойства | |
Молярная масса | 58,44277 г/моль |
Плотность | 2,165 г/см³ |
Термические свойства | |
Т. плав. | 800,8 °C |
Т. кип. | 1465 °C |
Мол. теплоёмк. | 50,8 Дж/(моль·К) |
Энтальпия образования | −234,8 кДж/моль |
Удельная теплота испарения | 170,85 кДж/моль |
Удельная теплота плавления | 28,68 кДж/моль |
Химические свойства | |
Растворимость в воде | 35,6 г/100 мл (0 °C) 35,9 г/100 мл (+25 °C) 39,1 г/100 мл (+100 °C) |
Растворимость в метаноле | 1,49 г/100 мл |
Растворимость в аммиаке | 21,5 г/100 мл |
Оптические свойства | |
Показатель преломления | 1,544202 (589 нм) |
Структура | |
Координационная геометрия | Октаэдральная (Na +) Октаэдральная (Cl -) |
Кристаллическая структура | гранецентрированная кубическая, cF8 |
Классификация | |
Рег. номер CAS | 7647-14-5 |
PubChem | 5234 |
Рег. номер EINECS | 231-598-3 |
SMILES | |
InChI | |
RTECS | VZ4725000 |
ChEBI | 26710 |
ru-wiki.ru
Хлорид натрия

Общая характеристика хлорида натрия
Синонимы: обычная соль, поваренная соль, столовая соль, пищевая соль, каменная соль, натриевая соль соляной кислоты, Sodium chloride, NaCl, хлористый натрий, галит.В твердом хлориде натрия, каждый ион окружен шестью ионами с противоположным зарядом. Ионы расположены в вершинах правильного октаэдра. Притяжение между Na+ и Cl—ионами в твердом состоянии настолько сильно, что только сильнополярные растворители, такие как вода хорошо растворяют NaCl. При растворении в воде, связи хлорида натрия распадаются и образуются Na+, Cl—ионы, которые окружены полярными молекулами воды. Этот раствор состоит из металл-акво комплексов с формулой [Na(H2O)8]+, расстояние между Na—O составляет 250 мкм. Водный раствор хлорида натрия имеет другие свойства: точка замерзания -21,12°С (23,31% соль), температура кипения насыщенного раствора соли около 108,7 ° С. Соль кристаллизуют в виде дигидрата NaCl•2H2O.
Получение хлорида натрия
Соль получают в коммерческих масштабах путем выпаривания из морской воды, скважин и соленых озер, из минерала — галита.Применение хлорида натрия
Это главный мировой ресурс для получения хлора и гидроксида натрия в соответствии с химическим уравнением:2NaCl + 2H2O → Cl2 + H2 + 2NaOH
В реакции Сольве хлорид натрия используется для производства карбоната натрия и хлорида кальция.
В добыче нефти и газа, соль является важным компонентом буровых растворов при бурении скважин. Она используется для флокуляции и увеличения плотности бурового раствора. Соль также пименяется для увеличения скорости твердения бетона в цементной оболочке.
В текстильной и красильной промышленностях соль используют как раствор для промывания чтобы отделить органические загрязнители и содействовать «высаливанию» красителей. Одна из её главных функций — обеспечение положительного заряда иона, что способствует поглощению отрицательно заряженных ионов красителей.
В целлюлозно-бумажной промышленности, соль используется для отбеливания древесной массы.
Раствор соли и серной кислоты используют для коагуляции эмульсию латекса из бутадиена.
Одно из основных применений соли — защита от обледенения дорог. Однако, дорожная соль, попадая в пресные водоемы наносит вред растениям и животным, нарушая их способность к осморегуляции.
Соль добавляют в пищу, как усилитель вкуса, консервант, связующее вещество. В качестве консерванта, соль ингибирует рост бактерий. Соль используется для сохранения некоторых продуктов, таких как копченое мясо или рыба. Она также может быть использована в медицине, чтобы отделить пиявок от тела, для дезинфекции ран.
Хлорид натрия используется в ветеринарии в качестве агента, вызывающего рвоту. Он принимается как теплый насыщенный раствор.
Хлорид натрия является основным огнетушащим веществом в огнетушителях (Met-LX, супер D). Соль действует как теплоотвод, рассеивая тепло от огня.
Соль используется во многих марках шампуней, зубных паст.
Характеристики хлорида натрия
Характеристики | Показатели |
CAS — номер | 7647-14-5 |
Молекулярная формула | NaCl |
Молекулярный вес , г/моль | 58,44277 |
Плотность, г/см3 | 2,165 |
Температура плавления, °C | 800,8 |
Растворимость в воде (КТ), г/л | 359 |
Автор: Виктор Епифанов
unibrom.ru

Общая характеристика хлорида натрия
Синонимы: обычная соль, поваренная соль, столовая соль, пищевая соль, каменная соль, натриевая соль соляной кислоты, Sodium chloride, NaCl, хлористый натрий, галит.В твердом хлориде натрия, каждый ион окружен шестью ионами с противоположным зарядом. Ионы расположены в вершинах правильного октаэдра. Притяжение между Na+ и Cl—ионами в твердом состоянии настолько сильно, что только сильнополярные растворители, такие как вода хорошо растворяют NaCl. При растворении в воде, связи хлорида натрия распадаются и образуются Na+, Cl—ионы, которые окружены полярными молекулами воды. Этот раствор состоит из металл-акво комплексов с формулой [Na(H2O)8]+, расстояние между Na—O составляет 250 мкм. Водный раствор хлорида натрия имеет другие свойства: точка замерзания -21,12°С (23,31% соль), температура кипения насыщенного раствора соли около 108,7 ° С. Соль кристаллизуют в виде дигидрата NaCl•2H2O.
Получение хлорида натрия
Соль получают в коммерческих масштабах путем выпаривания из морской воды, скважин и соленых озер, из минерала — галита.Применение хлорида натрия
Это главный мировой ресурс для получения хлора и гидроксида натрия в соответствии с химическим уравнением:2NaCl + 2H2O → Cl2 + H2 + 2NaOH
В реакции Сольве хлорид натрия используется для производства карбоната натрия и хлорида кальция.
В добыче нефти и газа, соль является важным компонентом буровых растворов при бурении скважин. Она используется для флокуляции и увеличения плотности бурового раствора. Соль также пименяется для увеличения скорости твердения бетона в цементной оболочке.
В текстильной и красильной промышленностях соль используют как раствор для промывания чтобы отделить органические загрязнители и содействовать «высаливанию» красителей. Одна из её главных функций — обеспечение положительного заряда иона, что способствует поглощению отрицательно заряженных ионов красителей.
В целлюлозно-бумажной промышленности, соль используется для отбеливания древесной массы.
Раствор соли и серной кислоты используют для коагуляции эмульсию латекса из бутадиена.
Одно из основных применений соли — защита от обледенения дорог. Однако, дорожная соль, попадая в пресные водоемы наносит вред растениям и животным, нарушая их способность к осморегуляции.
Соль добавляют в пищу, как усилитель вкуса, консервант, связующее вещество. В качестве консерванта, соль ингибирует рост бактерий. Соль используется для сохранения некоторых продуктов, таких как копченое мясо или рыба. Она также может быть использована в медицине, чтобы отделить пиявок от тела, для дезинфекции ран.
Хлорид натрия используется в ветеринарии в качестве агента, вызывающего рвоту. Он принимается как теплый насыщенный раствор.
Хлорид натрия является основным огнетушащим веществом в огнетушителях (Met-LX, супер D). Соль действует как теплоотвод, рассеивая тепло от огня.
Соль используется во многих марках шампуней, зубных паст.
Характеристики хлорида натрия
Характеристики | Показатели |
CAS — номер | 7647-14-5 |
Молекулярная формула | NaCl |
Молекулярный вес , г/моль | 58,44277 |
Плотность, г/см3 | 2,165 |
Температура плавления, °C | 800,8 |
Растворимость в воде (КТ), г/л | 359 |
Автор: Виктор Епифанов
unibrom.ru
Хлорид натрия — Википедия
Хлорид натрия | |
![]() | |
![]() | |
Общие | |
---|---|
Традиционные названия | обычная соль, поваренная соль, столовая соль, пищевая соль, каменная соль, галит[1] |
Хим. формула | NaCl |
Физические свойства | |
Молярная масса | 58,44277 г/моль |
Плотность | 2,165 г/см³ |
Термические свойства | |
Т. плав. | 800,8 °C |
Т. кип. | 1465 °C |
Мол. теплоёмк. | 50,8 Дж/(моль·К) |
Удельная теплота испарения | 170,85 кДж/моль |
Удельная теплота плавления | 28,68 кДж/моль |
Химические свойства | |
Растворимость в воде | 35,6 г/100 мл (0 °C) 35,9 г/100 мл (+25 °C) 39,1 г/100 мл (+100 °C) |
Растворимость в метаноле | 1,49 г/100 мл |
Растворимость в аммиаке | 21,5 г/100 мл |
Оптические свойства | |
Показатель преломления | 1,544202 (589 нм) |
Структура | |
Координационная геометрия | Октаэдральная (Na +) Октаэдральная (Cl -) |
Кристаллическая структура | гранецентрированная кубическая, cF8 |
Классификация | |
Рег. номер CAS | 7647-14-5 |
PubChem | 5234 |
Рег. номер EINECS | 231-598-3 |
SMILES | |
RTECS | VZ4725000 |
Безопасность | |
ЛД50 | 3000–8000 мг/кг |
NFPA 704 | |
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного. |
Хлори́д на́трия (NaCl, хлористый натрий) — натриевая соль соляной кислоты. Известен в быту под названием поваренной соли, основным компонентом которой и является. Хлорид натрия в значительном количестве содержится в морской воде, придавая ей солёный вкус. Встречается в природе в виде минерала галита (каменной соли). Чистый хлорид натрия представляет собой бесцветные кристаллы, но с различными примесями его цвет может принимать голубой, фиолетовый, розовый, жёлтый или серый оттенок.
Нахождение в природе и производство[править]
В природе хлорид натрия встречается в виде минерала галита, который образует залежи каменной соли среди осадочных горных пород, прослойки и линзы на берегах солёных озёр и лиманов, соляные корки в солончаках и на стенках кратеров вулканов и в сольфатарах. Огромное количество хлорида натрия растворено в морской воде. Мировой океан содержит 4 × 1015 тонн NaCl, то есть из каждой тысячи тонн морской воды можно получить в среднем 1,3 тонны хлорида натрия. Следы NaCl постоянно содержатся в атмосфере в результате испарения брызг морской воды. В облаках на высоте полтора километра 30 % капель, больших 10 мкм по размеру, содержат NaCl. Также он найден в кристаллах снега[2].
Наиболее вероятно, что первое знакомство человека с солью произошло в лагунах теплых морей или на соляных озёрах, где на мелководье солёная вода интенсивно испарялась под действием высокой температуры и ветра, а в осадке накапливалась соль. По образному выражению Пифагора, «соль была рождена благородными родителями: солнцем и морем»[3].
Галит[править]
В природе хлорид натрия чаще всего встречается в виде минерала галита. Он имеет гранецентрированную кубическую решётку и содержит 39,34 % Na, 60,66 % Cl. Другими химическими элементами, входящими в состав примесей, являются: Br, N, H, Mn, Cu, Ga, As, I, Ag, Ba, Tl, Pb, K, Ca, S, O. Плотность 2,1—2, 2 г / см ³, а твёрдость по шкале Мооса — 2. Бесцветный, прозрачный минерал, со стеклянным блеском. Распространённый минерал соленосных толщ. Образуется при осаждении в замкнутых водоёмах, а также как продукт сгона на стенках кратеров вулканов. Составляет пласты в осадочных породах лагунных и морских фаций, штокоподобные тела в соляных куполах и тому подобных.[4]
Каменная соль[править]
Каменной солью называют осадочную горную породу из группы эвапоритов, состоящую более чем на 90 % из галита. Галит также часто называют каменной солью. Эта осадочная горная порода может быть бесцветной или снежно-белой, но чаще она окрашена примесями глин, талька (серый цвет), оксидами и гидроксидами железа (жёлтый, оранжевый, розовый, красный), битумами (бурая). Каменная соль содержит хлориды и сульфаты натрия, калия, магния и кальция, бромиды, йодиды, бораты, гипс, примеси карбонатно-глинистого материала, доломита, анкериту, магнезита, битумов и так далее[4].
По условиям формирования месторождений каменную соль подразделяют на следующие виды[4]:
- рассолы современных соляных бассейнов
- соляные подземные воды
- залежи минеральных солей современных соляных бассейнов
- ископаемые залежи (важнейшие для промышленности).
Морская соль[править]
Морская соль является смесью солей (хлориды, карбонаты, сульфаты и т. д.), образующейся при полном испарении морской воды. Среднее содержание солей в морской воде составляет:
Соединение | Масс. доля, % |
---|---|
NaCl | 77,8 |
MgCl2 | 10,9 |
MgSO4 | 4,7 |
KCl | 2,5 |
K2SO4 | 2,5 |
CaCO3 | 0,3 |
Ca (HCO3)2 | 0,3 |
другие соли | 0,2 |

При испарении морской воды при температуре от +20 до +35 °C в осадке сначала кристаллизуются наименее растворимые соли — карбонаты кальция и магния и сульфат кальция. Затем выпадают более растворимые сульфаты натрия и магния, хлориды натрия, калия и магния, и после них — сульфаты калия и магния. Последовательность кристаллизации солей и состав осадка может несколько варьироваться в зависимости от температуры, скорости испарения и других условий. В промышленности морскую соль получают из морской воды, в основном методом обычного выпаривания. Она отличается от каменной соли значительно большим содержанием других химических солей, минералов и различных микроэлементов, в первую очередь йода, калия, магния и марганца. Соответственно, она отличается от хлорида натрия и по вкусу — горько-солёный привкус ей придают соли магния. Она используется в медицине: при лечении кожных заболеваний, таких как псориаз. Как лечебное вещество в аптечной и обычной торговой сети, распространённым продуктом является соль из Мёртвого моря. В очищенном виде этот вид соли также предлагается в продуктовой торговой сети — как натуральная и богатая йодом пищевая[5].
Залежи[править]
Залежи каменной соли найдены во всех геологических системах. Важнейшие из них сосредоточены в кембрийских, девонских, пермских и третичных отложениях. Каменная соль составляет мощные пластовые залежи и ядра сводчатых структур (соляных куполов и штоков), образует прослойки, линзы, гнезда и вкрапления в других породах[4]. Среди озёрных месторождений России крупнейшие — Эльтонское, Баскунчак в Прикаспии, Кучукское озеро, Кулундинское озеро, Эбейты и другие озёра в Западной Сибири.
Производство[править]
В древности технология добычи соли заключалась в том, что соляную рапу вытаскивали лошадиным приводом из шахт, которые назывались «колодцами» или «окнами», и были достаточно глубокими — 60—90 м. Извлечённую соль выливали в особый резервуар — творило, откуда она через отверстия стекала в нижний резервуар, и системой желобов подавалась в деревянные башни. Там её разливали в большие чаны, на которых соль вываривали.
На Руси поморы вываривали соль на побережье Белого моря и называли её морянка. В 1137 году новгородский князь Святослав определил налог на соляные варницы[6]:
…на мори от чрена и от салгы по пузу…[7] |
Беломорской солью, называемой «морянкой», торговали по всей Российской империи до начала XX века, пока её не вытеснила более дешёвая поволжская соль.
Современная добыча хлорида натрия механизирована и автоматизирована. Соль массово добывается выпариванием морской воды (тогда её называют морской солью) или рассола с других ресурсов, таких как соляные источники и соляные озера, а также разработкой соляных шахт и добычей каменной соли.
Для добычи хлорида натрия из морской воды необходимы условия жаркого климата с низкой влажностью воздуха, наличие значительных низменных территорий, лежащих ниже уровня моря, или затопляемых приливом, слабая водопроницаемость почвы испарительных бассейнов, малое количество осадков в течение сезона активного испарения, отсутствие влияния пресных речных вод и наличие развитой транспортной инфраструктуры.
Мировое производство соли в 2009 году оценивается в 260 миллионов тонн. Крупнейшими мировыми производителями являются Китай (60,0 млн тонн), США (46,0 млн тонн), Германия (16,5 млн тонн), Индия (15,8 млн тонн) и Канада (14 млн тонн)[8].
-
Добыча соли в южной части Мертвого моря, Израиль
-
Кристаллы каменной соли
-
Плантация морской соли в Дакаре
-
Соляные кучи на солончаке Уюни, Боливия
В пищевой промышленности и кулинарии[править]
Соль повареннаяВ пищевой промышленности и кулинарии используют хлорид натрия, чистота которого должна быть не менее 97 %. Его применяют как вкусовую добавку и для консервирования пищевых продуктов. Такой хлорид натрия имеет товарное название поваренная соль, порой также употребляются названия пищевая, столовая, а также уточнение названия в зависимости от её происхождения — каменная, морская, и по составу добавок — йодированная, фторированная и т. д. Такая соль является кристаллическим сыпучим продуктом с солёным вкусом без привкуса, без запаха (за исключением йодированной соли), в котором не допускаются посторонние примеси, не связанные с методом добывания соли. Кроме хлорида натрия, поваренная соль содержит небольшое количество солей кальция, магния, калия, которые придают ей гигроскопичности и жёсткости. Чем меньше этих примесей в соли, тем выше её качество.
Выделяют сорта: экстра, высший, первый и второй. Массовая доля хлористого натрия в сортах, %:
- экстра — не менее 99,5;
- высший — 98,2;
- первый — 97,5;
- второй — 97,0.
Массовая доля влаги в выварочной соли сорта «экстра» 0,1 %, в высшем сорте — 0,7 %. Допускают добавки йодида калия (йодистого калия), йодата калия, фторидов калия и натрия. Массовая доля йода должна составлять (40,0 ± 15,0) × 10−4 %, фтора (25,0 ± 5,0) × 10−3 %. Цвет экстра и высшего сортов — белый, однако для первого и второго допускается серый, желтоватый, розовый и голубоватый оттенки в зависимости от происхождения соли. Пищевую поваренную соль производят молотой и сеяной. По размеру зёрен молотую соль подразделяют на номера: 0, 1, 2, 3. Чем больше номер, тем больше зерна соли.
В кулинарии хлорид натрия потребляют как важнейшую приправу. Соль имеет характерный вкус, без которого пища кажется человеку пресной. Такая особенность соли обусловлена физиологией человека. Однако зачастую люди потребляют соли больше, чем нужно для физиологических процессов.
Хлорид натрия имеет слабые антисептические свойства — 10-15 %-ное содержание соли предотвращает размножение гнилостных бактерий. Этот факт обусловливает её широкое применение как консерванта.
В медицине[править]
Изотонический раствор хлорида натрия в воде (0,9 %) применяется как дезинтоксикационное средство, для коррекции состояния систем организма в случае обезвоживания, как растворитель других лекарственных препаратов. Гипертонические растворы (10 % р-р) используют как вспомогательный осмотический диуретик при отёке головного мозга, для поднятия давления при кровотечениях, в состояниях, характеризующихся дефицитом ионов натрия и хлора, при отравлении нитратом серебра, для обработки гнойных ран (местно). В офтальмологии как местное средство раствор хлорида натрия обладает противоотёчным действием[9].
В коммунальном хозяйстве. Техническая соль[править]
Зимой хлорид натрия, смешанный с другими солями, песком или глиной — так называемая техническая соль — применяется как антифриз против гололёда. Ею посыпают тротуары, хотя это отрицательно влияет на кожаную обувь и техническое состояние автотранспорта в виду коррозийных процессов.
Регенерация Nа-катионитовых фильтров[править]
Nа-катионитовые фильтры широко применяются в установках умягчения воды всех мощностей при водоподготовке. Катионитным материалом на современных водоподготовительных установках служат в основном глауконит, полимерные ионообменные смолы и сульфированные угли. Наиболее распространены сульфокатионитные ионообменные смолы.
Регенерацию Nа-катионитовых фильтров осуществляют 6—10%-м раствором поваренной соли, в результате катионит переводится в Na-форму, регенерируется. Реакции идут по уравнениям:
Химическая промышленность[править]
Соль, наряду с каменным углем, известняками и серой, образует «большую четвёрку» продуктов минерального сырья, которые являются важнейшими для химической промышленности[10]. Из неё получают соду, хлор, соляную кислоту, гидроксид натрия, сульфат натрия и металлический натрий. Кроме этого соль используется также для промышленного получения легкорастворимого в воде хлората натрия, который является средством для уничтожения сорняков[11]. Суммарное уравнение реакции электролиза горячего раствора хлорида натрия[12]:
Получение хлора и гидроксида натрия[править]
В промышленности путём электролиза раствора хлорида натрия получают хлор. Процессы, происходящие на электродах[13][14]:
- на катоде как побочный продукт выделяется водород вследствие восстановления ионов H+, образованных в результате электролитической диссоциации воды:
- поскольку (вследствие практически полной электролитической диссоциации NaCl), хлор в растворе находится в виде хлорид-ионов, они окисляются на аноде до свободного хлора в виде газа:
- суммарная реакция:
Как видно из уравнения суммарной реакции, ещё одним продуктом является гидроксид натрия. Расход электроэнергии на 1 т хлора составляет примерно 2700 кВт × час. Полученный хлор сжижается на жёлтую жидкость уже при обычной температуре[15].
Если между анодом и катодом нет диафрагмы, то растворенный в воде хлор начинает реагировать с гидроксидом натрия, образуя хлорид и гипохлорит натрия NaClO[14]:
Поэтому для получения гидроксида натрия применяют диафрагму и соответствующий метод получения NaOH называют диафрагменным. В качестве диафрагмы применяют асбестовый картон. В процессе электролиза раствор хлорида натрия постоянно подается в анодное пространство, а из катодного пространства непрерывно вытекает раствор хлорида и гидроксида натрия. Во время выпаривания последнего хлорид кристаллизуется, поскольку его растворимость в 50 % растворе NaOH крайне мала (0,9 %). Полученный раствор NaOH выпаривают в железных чанах, затем сухой остаток переплавляют.
Для получения чистого гидроксида натрия (без добавок хлорида натрия) применяют ртутный метод, где используют графитовый анод и ртутный катод. Вследствие того, что перенапряжение выделения водорода на ртути очень большое, на ней вновь появляются ионы натрия и образуется амальгама натрия[14][16]:
Амальгаму позже разлагают горячей водой с образованием гидроксида натрия и водорода, а ртуть перекачивают насосом обратно в электролизер:
Суммарная реакция процесса такая же, как и в случае диафрагменного метода.
Получение металлического натрия[править]
Металлический натрий получают электролизом расплава хлорида натрия. Происходят следующие процессы:
- на катоде выделяется натрий:
- на аноде выделяется хлор (как побочный продукт):
- суммарная реакция:
Ванна электролизера состоит из стального кожуха с футеровкой, графитового анода и кольцевого железного катода. Между катодом и анодом располагается сетчатая диафрагма. Для снижения температуры плавления NaCl (+800 °C), электролитом является не чистый хлорид натрия, а его смесь с хлоридом кальция CaCl 2 (40:60) с температурой плавления +580 °C. Металлический натрий, который собирается в верхней части катодного пространства, содержит до 5 % примесь кальция, но последний со временем почти полностью отделяется, поскольку его растворимость в жидком натрии при температуре его плавления (+371 °C) составляет всего 0,01 %. С расходованием NaCl его постоянно добавляют в ванну. Затраты электроэнергии составляют примерно 15 кВт × ч на 1 кг натрия[17].
Получение соляной кислоты и сульфата натрия[править]
Среди многих промышленных методов получения соляной кислоты, то есть водного раствора хлороводорода (HCl), применяется реакция обмена между хлоридом натрия и серной кислотой:
Первая реакция происходит в значительной степени уже при обычных условиях, а при слабом нагреве идет почти до конца. Вторая происходит лишь при высоких температурах. Процесс осуществляется в специальных механизированных печах большой мощности. Хлороводород, который выделяется, обеспыливают, охлаждают и поглощают водой с образованием соляной кислоты. Как побочный продукт образуется сульфат натрия Na2SO4[18][19].
Этот метод применяется также для получения хлороводорода в лабораторных условиях.
Физические и физико-химические свойства[править]
Температура плавления +800,8 °С, кипения +1465 °С.
Умеренно растворяется в воде, растворимость мало зависит от температуры: коэффициент растворимости NaCl (в граммах на 100 г воды) равен 35,9 при +21 °C и 38,1 при +80 °C. Растворимость хлорида натрия существенно снижается в присутствии хлороводорода, гидроксида натрия, солей — хлоридов металлов. Растворяется в жидком аммиаке, вступает в реакции обмена. В чистом виде хлорид натрия не гигроскопичен. Однако соль часто бывает загрязнена примесями (преимущественно ионами Ca2+, Mg2+ и SO2−4), и такая соль на воздухе сыреет[20]. Кристаллогидрат NaCl · 2H2O можно выделить при температуре ниже +0,15 °C[21].
Смесь измельчённого льда с мелким порошком хлорида натрия является эффективным охладителем. Так, смесь состава 30 г NaCl на 100 г льда охлаждается до температуры −20 °C. Это происходит потому, что водный раствор соли замерзает при температуре ниже 0 °C. Лёд, имеющий температуру около 0 °C, плавится в таком растворе, поглощая тепло окружающей среды.
Термодинамические характеристики | |
---|---|
ΔfH0g | −181,42 кДж/моль |
ΔfH0l | −385,92 кДж/моль |
ΔfH0s | −411,12 кДж/моль |
ΔfH0aq | −407 кДж/моль |
S0g, 1 bar | 229,79 Дж/(моль·K) |
S0l, 1 bar | 95,06 Дж/(моль·K) |
S0s | 72,11 Дж/(моль·K) |
Диэлектрическая проницаемость NaCl — 6,3
Плотность и концентрация водных растворов NaCl
Концентрация, % | Концентрация, г/л | Плотность, г/мл |
---|---|---|
1 | 10,05 | 1,005 |
2 | 20,25 | 1,012 |
4 | 41,07 | 1,027 |
6 | 62,47 | 1,041 |
8 | 84,47 | 1,056 |
10 | 107,1 | 1,071 |
12 | 130,2 | 1,086 |
14 | 154,1 | 1,101 |
16 | 178,5 | 1,116 |
18 | 203,7 | 1,132 |
20 | 229,5 | 1,148 |
22 | 256 | 1,164 |
24 | 283,2 | 1,18 |
26 | 311,2 | 1,197 |
Лабораторное получение и химические свойства[править]
При действии серной кислоты выделяет хлороводород.
С раствором нитрата серебра образует белый осадок хлорида серебра (качественная реакция на хлорид-ион).
Учитывая огромные природные запасы хлорида натрия, необходимости в его промышленном или лабораторном синтезе нет. Однако, его можно получить различными химическими методами как основной или побочный продукт.
- получение из простых веществ натрия и хлора является экзотермической реакцией[22]:
- нейтрализация щелочи гидроксида натрия соляной кислотой[23]:
Поскольку хлорид натрия в водном растворе почти полностью диссоциирован на ионы:
Его химические свойства в водном растворе определяются соответствующими химическими свойствами катионов натрия и хлорид-анионов.

Голубой цвет = Na+
Зелёный цвет = Cl−
Хлорид натрия образует бесцветные кристаллы кубическая сингония, пространственная группа Fm3m, параметры ячейки a = 0,563874 нм, d = 2,17 г/см3. Каждый из ионов Cl− окружён шестью ионами Na+ в октаэдрической конфигурации, и наоборот. Если мысленно отбросить, например, ионы Na+, то останется плотно упакованная кубическая структура ионов Cl−, называемая гранецентрированной кубической решёткой. Ионы Na+ тоже образуют плотно упакованную кубическую решётку. Таким образом, кристалл состоит из двух подрешёток, сдвинутых друг относительно друга на полупериод. Такая же решётка характерна для многих других минералов.
В кристаллической решётке между атомами преобладает ионная химическая связь, что является следствием действия электростатического взаимодействия противоположных по заряду ионов.
- ↑ Натрия хлорид на сайте Национального института стандартов и технологии США (англ. National Institute of Standards and Technology) (англ.)
- ↑ Некрасов Б. В. Основы общей химии. Т. 2. Изд. 3-е, испр. и доп., М.: Химия, 1973. — 688 с.; 270 табл.; 426 рис.; Список литературы, ссылок. С. 218
- ↑ Пифагор. Золотой канон. Фигуры эзотерики. — М.: Изд-во Эксмо, 2003. — 448 с. (Антология мудрости).
- ↑ 4,04,14,24,3 Малая горная энциклопедия. В 3-х т. = Мала гірнича енциклопедія / (На укр. яз.). Под ред. В. С. Белецкого. — Донецк: Донбасс, 2004. — ISBN 966-7804-14-3.
- ↑ УНИАН: Морская соль для красоты и здоровья кожи
- ↑ Российское законодательство Х—ХХ веков. Законодательство Древней Руси. Т. 1. М., 1984. С. 224—225.
- ↑ В переводе с поморской «говори» слово чрен (црен) означает четырёхугольный ящик, кованный из листового железа, а салга — котёл, в котором варили соль. Пузом в беломорских солеварнях называли мешок соли в два четверика, то есть, объёмом около 52 литров.
- ↑ Соль (PDF), Геологический обзор США на сайте Программы минеральных ресурсов (англ.)
- ↑ Энциклопедия здоровья
- ↑ Онлайн Энциклопедия кругосвет. Натрий(недоступная ссылка — история)
- ↑ Некрасов Б. В. Основы общей химии. Т. 1. Изд. 3-е, испр. и доп., М.: Химия, 1973. — 656 с.; 160 табл.; 391 рис. С. 261
- ↑ Синтез хлората натрия (англ.)
- ↑ Некрасов Б. В. Основы общей химии. Т. 1. Изд. 3-е, испр. и доп., М.: Химия, 1973. — 656 с.; 160 табл.; 391 рис. С. 249
- ↑ 14,014,114,2 Глинка М. Л. Общая химия (учебник), изд. 2-е изд., перераб. и доп., К.: Высшая школа, 1982. — С. 608
- ↑ Некрасов Б. В. Основы общей химии. Т. 1. Изд. 3-е, испр. и доп., М.: Химия, 1973. — 656 с.; 160 табл.; 391 рис. С. 254
- ↑ Некрасов Б. В. Основы общей химии. Т. 2. Изд. 3-е, испр. и доп., М.: Химия, 1973. — 688 с.; 270 табл.; 426 рис.; Список литературы, ссылок. С. 231
- ↑ Некрасов Б. В. Основы общей химии. Т. 2. Изд. 3-е, испр. и доп., М.: Химия, 1973. — 688 с.; 270 табл.; 426 рис.; Список литературы, ссылок. С. 219
- ↑ Некрасов Б. В. Основы общей химии. Т. 1. Изд. 3-е, испр. и доп., М.: Химия, 1973. — 656 с.; 160 табл.; 391 рис. С. 250
- ↑ Некрасов Б. В. Основы общей химии. Т. 1. Изд. 3-е, испр. и доп., М.: Химия, 1973. — 656 с.; 160 табл.; 391 рис. С. 257—258
- ↑ Некрасов Б. В. Основы общей химии. Т. 2. Изд. 3-е, испр. и доп., М.: Химия, 1973. — 688 с.; 270 табл.; 426 рис.; Список литературы, ссылок. С. 215—216
- ↑ Некрасов Б. В. Основы общей химии. Т. 2. Изд. 3-е, испр. и доп., М.: Химия, 1973. — 688 с.; 270 табл.; 426 рис.; Список литературы, ссылок. С. 234
- ↑ Некрасов Б. В. Основы общей химии. Т. 1. Изд. 3-е, испр. и доп., М.: Химия, 1973. — 656 с.; 160 табл.; 391 рис. С. 255
- ↑ Некрасов Б. В. Основы общей химии. Т. 1. Изд. 3-е, испр. и доп., М.: Химия, 1973. — 656 с.; 160 табл.; 391 рис. С. 191
B05A |
| ||
---|---|---|---|
B05B |
| ||
B05C |
| ||
B05D | |||
B05X |
| ||
B05Z |
wp.wiki-wiki.ru